Efficient Sampling for Probabilistic Programs

Vipul Venkataraman
Aditya Nori, Deepak Vijaykeerthy, Selva Samuel

Microsoft Research India
Outline

› Probabilistic Programming
› Probabilistic Programs
› Inference Techniques
› Hamiltonian Monte Carlo (HMC) Sampling
› Summary
Probabilistic Programming

› Programs in usual languages, such as C, Java, python with two added functionalities:
 • The probabilistic assignment statement \(x \sim Dist(\theta) \)
 • The observe statement \(\text{observe}(\emptyset) \)

› Goal of a probabilistic program: succinctly specify a probability distribution

› Goal of inference: infer the distribution specified by a probabilistic program
Outline

› Probabilistic Programming
› Probabilistic Programs
› Inference Techniques
› Hamiltonian Monte Carlo (HMC) Sampling
› Summary
Simple probabilistic program

```c
bool a, b;
a = Bernoulli (0.5);
b = Bernoulli (0.5);
return (a, b);
```

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>P(a, b)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>1/4</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>1/4</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>1/4</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>1/4</td>
</tr>
</tbody>
</table>
bool a, b;
a = Bernoulli (0.5);
b = Bernoulli (0.5);
observe (a || b);
return (a, b);

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>P(a, b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>0</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>1/3</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>1/3</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>1/3</td>
</tr>
</tbody>
</table>
Markov Chains as probabilistic programs

```c
int next_state (int cur_state) {
    bool coin = Bernoulli (0.5);
    switch (cur_state) {
        case (0):
            if (coin) return 1 else return 2;
        case (1):
            if (coin) return 3 else return 4;
        case (2):
            if (coin) return 5 else return 6;
        case (3):
            if (coin) return 1 else return 11;
        case (4):
            if (coin) return 12 else return 13;
        case (5):
            if (coin) return 14 else return 15;
        case (6):
            if (coin) return 15 else return 16;
    }
}
main() {
    int x = 0;
    while (x < 11) { x = next_state(x); }
    return x;
}
```

Knuth-Yao’s technique to obtain fair die from fair coin tosses
True Skill

float skill_a, skill_b, skill_c;
float perf_a1, perf_b1, perf_b2, perf_c2,
 perf_a3, perf_c3;

skill_a = Gaussian(100, 10);
skill_b = Gaussian(100, 10);
skill_c = Gaussian(100, 10);

// first game: a vs b, a won
perf_a1 = Gaussian(skill_a, 15);
perf_b1 = Gaussian(skill_b, 15);
observe(perf_a1 > perf_b1);

// second game: b vs c, b won
perf_b2 = Gaussian(skill_a, 15);
perf_c2 = Gaussian(skill_b, 15);
observe(perf_b2 > perf_c2);

// third game: a vs c, a won
perf_a3 = Gaussian(skill_a, 15);
perf_c3 = Gaussian(skill_b, 15);
observe(perf_a3 > perf_c3);

return(skill_a, skill_b, skill_c);

› Sample perf_a from a noisy skill_a distribution
› Sample perf_b from a noisy skill_b distribution
› if perf_a > perf_b, then a wins, else b wins

skill_a = Gaussian (102.1, 7.8)
skill_b = Gaussian (100.0, 7.6)
skill_c = Gaussian (97.9, 7.8)
Outline

› Probabilistic Programming
› Probabilistic Programs
› Inference Techniques
› Hamiltonian Monte Carlo (HMC) Sampling
› Summary
Sampling

The aim is to solve one or both of the following problems:
› To generate samples \(\{x^{(r)}\}_{r=1}^R \) from a given probability distribution \(P(x) \)
› To estimate expectations of functions under this distribution, for example

\[
\Phi = < \varphi(x) > \equiv \int dx \, P(x) \varphi(x)
\]

› If we solve the first problem, the second can be solved by using the random samples \(\{x^{(r)}\}_{r=1}^R \) to give the estimator

\[
\Phi^* \equiv \frac{1}{R} \sum_{r} \varphi(x^{(r)})
\]
Rejection Sampling

The functions involved in rejection sampling. We desire samples from the target $P^*(x)$. We are able to draw from proposal density $Q^*(x)$, and we know a c such that $cQ^*(x) > P^*(x)$ for all x.

A point (x, u) is generated at random in the shaded area under the curve. If this point lies in the darker region then it is accepted. We essentially accept with probability $a = \frac{P^*(x)}{cQ^*(x)}$.

Figure: DJ Mackay, Information Theory, Inference and Learning Algorithms
Metropolis Hastings

- Draw sample for x' from the proposal density $Q(x'; x)$
- Compute $a = \frac{P^*(x') Q(x; x')}{P^*(x) Q(x'; x)}$
- If $a > 1$ then the new state is accepted
- Otherwise, new state is accepted with probability a
Sampling in a program

\begin{align*}
a \sim & \text{Normal}(0, 10) \\
\text{if } (a < 0) & \quad b \sim \text{Normal}(a, 15) \\
\text{if } (b < 0) & \quad c \sim \text{Normal}(b, 25) \\
\text{else} & \quad c \sim \text{Normal}(b, 30) \\
\text{else} & \quad b \sim \text{Normal}(a, 20) \\
\text{if } (b < 0) & \quad c \sim \text{Normal}(b, 30) \\
\text{else} & \quad c \sim \text{Normal}(b, 25) \\
\text{observe } & \quad (a < b) \\
\text{return } c;
\end{align*}

\textbf{Theorem:} \ P \equiv \text{Pre}(P) \\
A. Nori, C. Hur, S. Rajamani, S. Samuel. \\
R2: An efficient MCMC Sampler for probabilistic programs, AAAI '14.
Evaluation

Number of Samples

- Model: 10000, 20000, 20000, 10000
- True Skill: 35000, 4000, 5000, 500
- Linear Regression: 50000, 50000, 50000, 500
- HIV: 50000, 50000, 50000, 1000

Legend:
- R2 - MH
- Church
- Venture
- STAN
Outline

› Probabilistic Programming
› Probabilistic Programs
› Inference Techniques
› Hamiltonian Monte Carlo (HMC) Sampling
› Summary
HMC versus MH

Hamiltonian Monte Carlo

Metropolis Hastings

- Samples generated from a bivariate Gaussian with correlation $\rho = 0.998$
- The start position in each case is pointed by the arrow
Hamiltonian Monte Carlo Sampling

The probability density $P(x)$ of a model can be written in the form

$$P(x) = \frac{e^{-E(x)}}{Z}$$

We augment the space variable x by momentum variables p. The total energy is defined by the Hamiltonian

$$H(x, p) = E(x) + K(p)$$

We now simulate the Hamiltonian dynamics on the system

$$\dot{x} = p$$

$$\dot{p} = -\frac{\partial E(x)}{\partial x}$$
Hamiltonian model

 › We approximate the simulation through leapfrog discretization

\[
p\left(\tau + \frac{\epsilon}{2}\right) = p(\tau) - \frac{\epsilon}{2} \frac{\partial E}{\partial x}(x(\tau))
\]

\[
x(\tau + \epsilon) = x(\tau) + \epsilon p\left(\tau + \frac{\epsilon}{2}\right)
\]

\[
p(\tau + \epsilon) = p\left(\tau + \frac{\epsilon}{2}\right) - \frac{\epsilon}{2} \frac{\partial E}{\partial x}(x(\tau + \epsilon))
\]

 › Determining suitable gradient \(\frac{\partial E}{\partial x} \) key for faster convergence
Gradient Computation

› Leapfrog step

\[p\left(\tau + \frac{\epsilon}{2}\right) = p(\tau) - \frac{\epsilon}{2} \frac{\partial E}{\partial x}(x(\tau)) \]

› Two options:
 • Local gradient
 • Global gradient

› Need to compute global gradients dynamically

› Solution? Backward computation

\[\log(P(x_a, x_b)) = \log(P(x_a, 0,5)) + \log(P(x_b, x_a, 1)) \]
Gradient Computation

\begin{align*}
a &\sim \text{normal}(0,1); \\
\text{if } (a > 0.5) &
\quad b \sim \text{normal}(a, 2); \\
\text{else} &
\quad c \sim \text{normal}(a, 3); \\
\end{align*}

Joint log probability density

\begin{align*}
\text{if } (a > 0.5) &
\quad \log P(a, b) = \log(P(a)) + \log(P(b|a)) \\
\text{else} &
\quad \log P(a, c) = \log(P(a)) + \log(P(c|a)) \\
\end{align*}

\[\text{grad}(a) = \frac{\partial}{\partial a} \log(P(a)) + \frac{\partial}{\partial a} \log(P(b|a)) \]
\[\text{else} \\
\quad \text{grad}(a) = \frac{\partial}{\partial a} \log(P(a)) + \frac{\partial}{\partial a} \log(P(c|a)) \]
Gradient Computation

Linear Regression

```python
array dataX, dataY;
a = Normal (0, 1);
b = Normal (5, 1.8);
inv_noise = Gamma (1, 1);
y = array[dataY.length]
for (i = 1; i <= dataY.length; i++)
{
    y[i] = Normal(a * dataX[i] + b, 1 / inv_noise);
    observe(y[i] == dataY[i]);
}
return(a, b, inv_noise);
```

Dependency graph

```
grad(b) = \frac{\partial}{\partial b} \log(P(b)) + \sum_{i=1}^{n} \frac{\partial}{\partial b} \log(P(y[i]|b))
```
Evaluation

<table>
<thead>
<tr>
<th>Model</th>
<th>True Skill</th>
<th>Linear Regression</th>
<th>HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2 - HMC</td>
<td>200</td>
<td>7500</td>
<td>500</td>
</tr>
<tr>
<td>R2 - MH</td>
<td>10000</td>
<td>20000</td>
<td>5000</td>
</tr>
<tr>
<td>Church</td>
<td>20000</td>
<td>35000</td>
<td>50000</td>
</tr>
<tr>
<td>Venture</td>
<td>500</td>
<td>4000</td>
<td>50000</td>
</tr>
<tr>
<td>STAN</td>
<td>150</td>
<td>5000</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1000</td>
</tr>
</tbody>
</table>
Outline

› Probabilistic Programming
› Probabilistic Programs
› Inference Techniques
› Hamiltonian Monte Carlo (HMC) Sampling
› Summary
Summary

› Improved performance from R2 – MH
› Handling observe better, through efficient sampling from truncated distributions
› Parallel tempering – run N copies of the system, randomly initialized, at different start points
Thank you!