Spy vs Spy: Anonymous Messaging

Sewoong Oh
University of Illinois at Urbana-Champaign

Joint work with
Giulia Fanti, Peter Kairouz, Kannan Ramchandran, Pramod Viswanath
Anonymous Social Media provide meta-data privacy
Existing anonymous messaging apps

- Yik Yak
- whisper

Logged messages:
- "Attendance is not expected to be high today given the rain and hangovers."
- "I tried to facetime campus police last night."
Threat is real
Anonymous messaging meets social filtering
Diffusion of rumor/contagion

Social network/contact network
Diffusion of rumor/contagion

message author
Diffusion of rumor/contagion
Rumor source detection

can we locate the message author?
Timing

<table>
<thead>
<tr>
<th>time</th>
<th>from</th>
<th>to</th>
<th>control</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:12</td>
<td>Alice</td>
<td>Spy1</td>
<td>101101</td>
</tr>
<tr>
<td>10:25</td>
<td>Bob</td>
<td>Spy2</td>
<td>101001</td>
</tr>
<tr>
<td>11:01</td>
<td>Mary</td>
<td>Spy3</td>
<td>100100</td>
</tr>
</tbody>
</table>
Snapshot-based adversary
Snapshot reveals the source

- message author is likely to be in the "center"
Rumor Centrality [Shah, Zaman ’11]

Similar performance using Jordan centrality [Zhu, Ying ’13]
Our Goal (on infinite regular trees)

\[\log \mathbb{P}(\text{detection}) \]

\[\log N_T \]

\[\mathbb{P}(\text{Detection}) = \frac{1}{N_T} \]
Setting

- Contact network is infinite, regular, tree
- Adversary has the contact network and the snapshot
- Protocol is allowed to infect any 1-hop neighbors at each time
Line graph
Line graph: diffusion

\[T = 0 \]
Line graph: diffusion

\[T = 1 \]
Line graph: diffusion

\[T = 1 \]
Line graph: diffusion

\[T = 2 \]
Line graph: diffusion

\[T = 2 \]
Line graph: diffusion

p

$T = 3$
Line graph: diffusion

- equivalent to two independent random walks

\[T = 3 \]
Adversary with snapshot

nodes with the message

can we locate the message author?
Maximum likelihood detection

Probability of detection $\approx \frac{1}{\sqrt{N}}$
Line graph: adaptive diffusion

$T = 0$
Line graph: adaptive diffusion

$T = 1$

each neighbor is infected w.p. $1/2$
Line graph: adaptive diffusion

Node 1 receives message at $T = 1$
Line graph: **adaptive diffusion**

- Adaptive diffusion prescribes to pass at adaptive rate

\[p_{\text{infect}} = \frac{h + 1}{T + 1} \]
Line graph: adaptive diffusion

- node 2 receives the message

\[T = 2 \]
Line graph: adaptive diffusion

\[p_{\text{infect}} = \frac{h + 1}{T + 1} \]
Line graph: **adaptive diffusion**

- equivalent to **two independent Polya’s urn processes**
- **adaptive and asymmetric**: Nodes that are infected earlier, spread faster
Given snapshot

\[G_T \]

can we locate the message author?
Maximum likelihood detection

Likelihoods:

- 2
- 1
- 0
- 1
- 2

Probability of detection $\sim \frac{1}{N}$
d-regular trees
Probability of detection using Rumor Centrality

spread with fixed probability p

- [Shah & Zaman ’11]
Probability of detection using Jordan centrality

spread with probability

\[p(h, t) = \frac{h + 1}{t + 1} \]
- **Strategy:**
 - Design the infection a symmetric ball of depth $T/2$
 - Such that the source is equally likely to be any node at any given time T
- Initially, the author is also the virtual source.
- And randomly selects a neighbor to be the next virtual source.
d-regular trees: adaptive diffusion

$T = 1$

In addition to the message, v^* passes $h = 1$ and $T = 1$ to the chosen neighbor.

$h = \# \text{ of hops away from true source}$
At $T=2$, the virtual source passes the message to all its neighbors.
\(d \)-regular trees: adaptive diffusion

- at \(T=2 \), the protocol has two options
 - keeping the virtual source token
 - passing the virtual source token
d-regular trees: adaptive diffusion

keeping the virtual source token

with probability $\alpha_{d,T,h}$

passing the virtual source token

with probability $1 - \alpha_{d,T,h}$
Passing the virtual source token

\[T = 2 \]
Passing the virtual source token

\[T = 3 \]
Passing the virtual source token

\[h = 2 \]
\[T = 4 \]
Keeping the virtual source token

\[T = 2 \]
Keeping the virtual source token

\[T = 3 \]
Keeping the virtual source token

\[h = 1 \]

\[T = 4 \]
Adversary with snapshot

can the adversary locate the message author?
Maximum likelihood estimation

- If virtual source is kept with prob. \(\alpha_{d,T,h} = \frac{(d - 1)^\frac{T}{2} + 1 - h - 1}{(d - 1)^\frac{T}{2} + 1 - 1} \)
- Nodes that receive message faster, spread faster
Theorem. [Fanti, Kairouz, Oh, Viswanath 2015]

On an infinite d-regular tree,
1. adaptive diffusion spreads fast,
\[N_T \approx (d - 1)^{T/2} \]
2. achieves almost perfect obfuscation
\[P(\text{Detection}) = \frac{1}{N_T - 1} \]
3. The expected distance between the estimated and the true source is $T/2$
What if the tree is irregular?

\[T = 0 \quad v^* \]

\[d_v = \begin{cases}
3 & \text{w.p. 0.5} \\
5 & \text{w.p. 0.5}
\end{cases} \]
\(T = 1 \)

\[v^* \]

\[d_v = \begin{cases}
3 & \text{w.p. } 0.5 \\
5 & \text{w.p. } 0.5
\end{cases} \]
$T = 2$

v^*

G_T

\[
d_v = \begin{cases}
3 & \text{w.p. 0.5} \\
5 & \text{w.p. 0.5}
\end{cases}
\]
\[T = 3 \]

\[d_v = \begin{cases}
3 & \text{w.p. 0.5} \\
5 & \text{w.p. 0.5}
\end{cases} \]

\[G_T \]
\(T = 4 \)

\[v^* \]

\(G_T \)

\[d_v = \begin{cases}
3 & \text{w.p. 0.5} \\
5 & \text{w.p. 0.5}
\end{cases} \]
\[
\hat{v}_{ML} = \arg \max_{v \in \partial G_T} \frac{1}{d_{vs}} \prod_{w \in \phi(vs,v) \setminus \{vs,v\}} (d_w - 1)
\]

\[
T = 4 \\
G_T
\]

\[
d_v = \begin{cases}
3 & \text{w.p. 0.5} \\
5 & \text{w.p. 0.5}
\end{cases}
\]
\[T = 4 \]

\[d_v = \begin{cases}
 3 & \text{w.p. 0.5} \\
 5 & \text{w.p. 0.5}
\end{cases} \]

\[\hat{v}_{\text{ML}} = \arg \max_{v \in \partial G_T} \frac{1}{d_{v_s} \prod_{w \in \phi(v_s, v) \setminus \{v_s, v\}} (d_w - 1)} \]

\[F(G_T) = \frac{1}{5 \times 2} \]
Does adaptive diffusion still achieve perfect obfuscation?

![Graph showing the relationship between the number of infected nodes and the probability of detection.]

\[d_v = \begin{cases}
3 & \text{w.p. 0.5} \\
10 & \text{w.p. 0.5}
\end{cases} \]

\[\frac{1}{N} \]

- (3,5) => (0.5,0.5), \(d_o = 5 \)
- (3,6) => (0.5,0.5), \(d_o = 6 \)
- (3,7) => (0.5,0.5), \(d_o = 7 \)
- (3,10) => (0.5,0.5), \(d_o = 10 \)
Galton-Watson tree G_T

\[
F(G_T) = \max_{v \in \partial G_T} \frac{1}{d_{vs} \prod_{w \in \phi(vs,v) \setminus \{vs,v\}} (d_w - 1)}
\]

- Probability of detection:

\[
\mathbb{P}(\hat{v}_{ML} = v^*) = \sum_{G_T} \mathbb{P}(G_T) \mathbb{P}(\hat{v}_{ML} = v^*|G_T)
\]

\[
= \mathbb{E}(F(G_T))
\]
Corollary

If \(d_v = \begin{cases} d_{\text{min}} \quad \text{w.p. } p_{\text{min}} \\ \vdots \quad \vdots \end{cases} \), and \((d_{\text{min}} - 1)p_{\text{min}} \geq 1 \), then

\[
P(\hat{v}_{\text{ML}} = v^*) = \mathbb{E}_{G_T} \left[\max_{v \in \partial G_T} \frac{1}{\prod_{w \in \phi(vs,v) \setminus \{vs,v\}} (d_w - 1)} \right]
\]

\[
= (d_{\text{min}} - 1)^{-T + o(T)}
\]
Proof idea for

\[
\min_{v \in \partial G_T} \prod_{w \in \phi(vs,v) \setminus \{vs,v\}} (d_w - 1) = (d_{\text{min}} - 1)^{T + o(T)}
\]

\[
d_v = \begin{cases}
3 & \text{w.p. 0.5} \\
5 & \text{w.p. 0.5}
\end{cases}
\]

\[
d_v = \begin{cases}
3 & \text{w.p. 0.5} \\
1 & \text{w.p. 0.5}
\end{cases}
\]
What about the control packets?

Snapshot

Timing

<table>
<thead>
<tr>
<th>meta-data</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
</tr>
<tr>
<td>10:12</td>
</tr>
<tr>
<td>10:25</td>
</tr>
<tr>
<td>11:01</td>
</tr>
</tbody>
</table>
Spy-based adversary
Adversary with timing

what if spies collect meta-data?
what about the control packets?

<table>
<thead>
<tr>
<th>time</th>
<th>from</th>
<th>to</th>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_1=8$</td>
<td>1</td>
<td>Spy1</td>
<td>$h=2,t=3$</td>
</tr>
<tr>
<td>$T_2=10$</td>
<td>4</td>
<td>Spy2</td>
<td>$h=3,t=5$</td>
</tr>
</tbody>
</table>

state information reveals the source location.
Suppose the state is hidden

\[N = 101 \text{ and } T_2 = T_1 + 25 \]
Hiding state variables by sending only the sampling paths

$$T = 1$$

along with message, pass the entire sample path
Hiding state variables by sending only the sampling paths

\[T = 2 \]

node 1 waits 1 unit of time and passes message
Hiding state variables by sending only the sampling paths

\[T = 4 \]

spies observe both meta-data and control packet
Hiding state variables by sending only the sampling paths

<table>
<thead>
<tr>
<th>time</th>
<th>from</th>
<th>to</th>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_1=8$</td>
<td>1</td>
<td>Spy1</td>
<td>left sample path after $T=8$</td>
</tr>
<tr>
<td>$T_2=10$</td>
<td>4</td>
<td>Spy2</td>
<td>right sample path after $T=10$</td>
</tr>
</tbody>
</table>
Adaptive diffusion on a tree

<table>
<thead>
<tr>
<th>time</th>
<th>from</th>
<th>to</th>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Alice</td>
<td>Spy1</td>
<td>sample paths for the descendants of the spy</td>
</tr>
<tr>
<td>10</td>
<td>Bob</td>
<td>Spy2</td>
<td>sample paths for the descendants of the spy</td>
</tr>
</tbody>
</table>
Adaptive diffusion on a tree

infinite d-regular tree, with spies i.i.d. chosen with probability p

\mathbb{P}(detection)

![Graph showing the probability of detection for diffusion and adaptive diffusion on a tree with varying degree d. The graph compares diffusion; $d=5$, adaptive diffusion; $d=5$, adaptive diffusion; $d=10$, and the lower bound.]
Collaborators

Giulia Fanti

Peter Kairouz

K. Ramchandran

P. Viswanath
Messaging App: **Wildfire**

Wildfire empowers devices by removing central service providers. It also has stronger anonymity properties than Secret, Whisper, and Yik Yak.

Anonymous, distributed, secure implementation.