Many phenomena happen in predictable cycles:
- CPU clock, presidential elections, moon cycle

Periodicity: tendency for events to occur in a cyclic pattern
- Observations have a regular time interval.
- *Period* measures length of a cycle or interval.
- In time-series data we want to mine for trends:
 - Periodic patterns can be used to forecast future occurrences
 - Notice anomalies when periodic event is skipped
- Connection to mining frequent sequence patterns:
 - Partition input sequence by period length, starting from first occurrence.
- Many Applications
 - Improved recommendation based on habits
 - Biomedical – detecting telomere decay
What is Periodic Pattern

- **Periodic Pattern**: subsequence that repeats, following a specific or approximate frequency.

- **Notation**: pattern expressed as tuple of events from the sequence.
 - * event means “don’t care”

- **Sub Pattern**: is when one or more events in the cycle is replaced with *

- **Super Pattern**: a * event is replaced with an exact event.

- **Frequency Count**: Number of instances where the periodic pattern is found in the data.

- **Confidence**:

 \[
 \text{conf}(s) = \frac{\text{frequency count}(s)}{m}
 \]

 - \(m\) is the max frequency count = length(pattern)/length(sequence)
SUBTLETIES IN PERIODIC PATTERNS

- Periodic pattern does not always define the behavior taken
 - Scenario 1. There is one pattern: “put on clothes at 8am each day”.
 - Behavior is different depending on season (t-shirt or jacket)
 - Events are abstract (without defining concrete behavior)
 - Scenario 2. There are two patterns:
 - *Put on jacket at 8am each day*. Pattern applies for October-April
 - *Put on t-shirt at 8am each day*. Pattern applies for May-September
 - Events are concrete (behavior defined explicitly)
 - Some periodic patterns might not be active continuously
 - Observed behavior in either scenario is the same
 - Abstract events or concrete events depends on the contents of input
- A data sequence often contains multiple interleaved periodic patterns
 - Pattern 1 : *Wear blue jacket every Wednesday*
 - Pattern 2 : *Wear blue jacket every 3 days*
 - Typical solution is to selectively consider sequence elements for pattern matching
TYPES OF PERIODIC PATTERNS

Full periodic pattern : specifies behavior at every step in the period. Pattern tuple does not contain any ‘*’ events

Pattern: (A,B,C,D) → ABCD ABCD ABCD....

Ex: Every day contributes to year cycle. (day1, day2 ... day365)

Partial periodic pattern : specifies behavior at some points in time and not others. Pattern does contain unspecified events.

Pattern: (A,B,C,*) → ABCR ABCV ABCF....

Ex: Every Tuesday, CS512 students sit in lecture room from 9:30 to 10:45.
MINING FULL PERIODIC PATTERNS

- Fast Fourier Transform: Find pattern’s frequency using DFT
 - Fourier Transform: change sequence from time to frequency domain
 - Continuous, periodic functions can be written as linear combination of sines and cosines
 - DFT: Discrete Fourier Transform:
 - Takes samples from target function and finds a linear combination of sinusoid functions which match the sample point.

- Autocorrelation:
 - Find correlations between observation at time t and time t+k where k is some time shift
 - Use Pearson’s product moment correlation to find correlation between observed vector
 \[v_1[i] = o_i \quad 1 \leq i \leq n - k \]
 and lagged vector
 \[v_2[i] = o_{i+k} \]
• Autocorrelation function is \(\frac{1}{t-\tau} \int_{0}^{t-\tau} x(t)x(t+\tau)dt \) for time lag \(\tau \)
AUTOCORRELATION FUNCTION

- Autocorrelation function is \(\frac{1}{t - \tau} \int_0^{t-\tau} x(t)x(t + \tau)dt \) for time lag \(\tau \)
AUTOCORRELATION FUNCTION

- Autocorrelation function is
 \[
 \frac{1}{t - \tau} \int_{0}^{t-\tau} x(t)x(t + \tau)dt
 \]
 for time lag \(\tau \).

- Common technique is to perform FFT on autocorrelation curve.

- Result gives **prime periods**:
 - If \((a,b)\) is pattern with period \(t\), \((a,b,a,b)\) is a redundant pattern with period \(2t\).
 - Prime period is the smallest \(t\) which captures all redundant patterns.

Phase aligned

Phase misaligned

Phase approximately aligned
FREQUENT PARTIAL PATTERNS

• Exploiting Apriori Property
 • All sub-patterns of frequent pattern are also frequent
 • Candidate set shrinks slowly:

 | X | X | X | X | X | X |
 |---|---|---|---|---|---|
 | Y | Y | Y | Y | Y | |

 \[X = \text{Confidence of } (A, *) \]
 \[Y = \text{Confidence of } (*, B) \]

 Confidence of \((A, B)\) is high if \(X, Y\) is high (pigeonhole)

• Candidate Max-Patterns [1]
 • Max-Pattern is compressed representation of frequent 1-patterns
 • All partial periodic patterns can be found by finding a set of frequent sub-patterns of Max-Pattern
 • Max-subpattern tree captures frequency of subpatterns, can find frequent partial periodic patterns.

\[(A, *, *) \]
\[(B, *, *) \]
\[(*, C, *) \]
\[\{A, B, C, *\} \]

Max-Pattern composed from three 1-patterns

• One scan to find 1-patterns and one scan to build the tree.
VARYING PERIOD PATTERNS

Synchronous Pattern: treat period as a stable value, not flexible.

- pattern occurs at a regular, predictable period interval
- *Ex*: Scheduling jobs on a computer to execute at precise times each day

Asynchronous Pattern: Period can misaligned from insertion of unexpected or noisy event.

- Pattern length must be flexible to account for unexpected events.
- Most students don’t show up exactly at 9:30, [9:20, 9:35]
- A student who shows up exactly at 9:30 might be late if they can’t find their pants.
FINDING THE PERIOD

- Lots of possible periods. Don’t want to try them all.

- **Distance-based pruning** [2]:
 - For periodic events, relative distance between occurrences is stable.
 - For each symbol occurrence, find distance to previous occurrences.
 - Filter out pairs of (symbol, distance) by threshold support value
 - Relationship to autocorrelation: distances with high support will act as good lag values for autocorrelation

- Remove Noise: **Dynamic Time Warping**
 - Noisy insertions cause a period to “stretch”
 - Solution: DP to find matching between two time series to minimize total distance.

Diagram illustrating the concept of dynamic time warping.
PERIODICITY FROM INCOMPLETE DATA

• Problem: incomplete data does not include all periodic occurrences

• Main idea: if good period value is selected, the occurrences of periodic events form clusters.[3]

• Measure of period quality:

\[\gamma^+_\mathcal{X}(T) = \max_{I \in \mathcal{I}_T} \Delta^+_\mathcal{X}(I, T). \]

- \(T \) is candidate period = set of time ranges
- \(I \) is candidate pattern = some subset of \(T \)

• For each \(T \), pick candidate pattern to maximize probability measure:

\[\Delta^+_\mathcal{X}(I, T) = \mu^+_\mathcal{X}(I, T) - \frac{|I|}{T}, \]

- Include time ranges where \(P(\text{event}) > P(\text{no event}) \)

• Return the \(T \) that maximizes the probability measure
PERIODIC BEHAVIOR FOR MOVING OBJECT

• Moving objects: cars and people (and more)!
 • Where will I be tomorrow?
• Moving objects have a path and a destination.
 • Many paths go to one destination, often may change
 • Destination is not easy to substitute
 • Reference point: place where object spends a lot of time
 • Basically means destination
• Objects visiting reference points can have periodic behavior
• Finding periodic behavior at each reference point:
 • Log timestamps for reference point visits
 • Find periodicity using autocorrelation and FFT
• Finding periodic patterns given period T:
 • Consider all reference points with period T
 • For sub-intervals in T and reference point o, calculate probability of object visiting o at each subinterval
Sources

[3] Li, Zhenhui, Jingjing Wang, and Jiawei Han. "Mining event periodicity from incomplete observations." Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2012.