Contents

Foreword xix
Foreword to Second Edition xxi
Preface xxiii
Acknowledgments xxxi
About the Authors xxxv

Chapter 1 Introduction 1
1.1 Why Data Mining? 1
 1.1.1 Moving toward the Information Age 1
 1.1.2 Data Mining as the Evolution of Information Technology 2
1.2 What Is Data Mining? 5
1.3 What Kinds of Data Can Be Mined? 8
 1.3.1 Database Data 9
 1.3.2 Data Warehouses 10
 1.3.3 Transactional Data 13
 1.3.4 Other Kinds of Data 14
1.4 What Kinds of Patterns Can Be Mined? 15
 1.4.1 Class/Concept Description: Characterization and Discrimination 15
 1.4.2 Mining Frequent Patterns, Associations, and Correlations 17
 1.4.3 Classification and Regression for Predictive Analysis 18
 1.4.4 Cluster Analysis 19
 1.4.5 Outlier Analysis 20
 1.4.6 Are All Patterns Interesting? 21
1.5 Which Technologies Are Used? 23
 1.5.1 Statistics 23
 1.5.2 Machine Learning 24
 1.5.3 Database Systems and Data Warehouses 26
 1.5.4 Information Retrieval 26
1.6 **Which Kinds of Applications Are Targeted?** 27
1.6.1 Business Intelligence 27
1.6.2 Web Search Engines 28

1.7 **Major Issues in Data Mining** 29
1.7.1 Mining Methodology 29
1.7.2 User Interaction 30
1.7.3 Efficiency and Scalability 31
1.7.4 Diversity of Database Types 32
1.7.5 Data Mining and Society 32

1.8 **Summary** 33

1.9 **Exercises** 34

1.10 **Bibliographic Notes** 35

Chapter 2 Getting to Know Your Data 39

2.1 **Data Objects and Attribute Types** 40
2.1.1 What Is an Attribute? 40
2.1.2 Nominal Attributes 41
2.1.3 Binary Attributes 41
2.1.4 Ordinal Attributes 42
2.1.5 Numeric Attributes 43
2.1.6 Discrete versus Continuous Attributes 44

2.2 **Basic Statistical Descriptions of Data** 44
2.2.1 Measuring the Central Tendency: Mean, Median, and Mode 45
2.2.2 Measuring the Dispersion of Data: Range, Quartiles, Variance, Standard Deviation, and Interquartile Range 48
2.2.3 Graphic Displays of Basic Statistical Descriptions of Data 51

2.3 **Data Visualization** 56
2.3.1 Pixel-Oriented Visualization Techniques 57
2.3.2 Geometric Projection Visualization Techniques 58
2.3.3 Icon-Based Visualization Techniques 60
2.3.4 Hierarchical Visualization Techniques 63
2.3.5 Visualizing Complex Data and Relations 64

2.4 **Measuring Data Similarity and Dissimilarity** 65
2.4.1 Data Matrix versus Dissimilarity Matrix 67
2.4.2 Proximity Measures for Nominal Attributes 68
2.4.3 Proximity Measures for Binary Attributes 70
2.4.4 Dissimilarity of Numeric Data: Minkowski Distance 72
2.4.5 Proximity Measures for Ordinal Attributes 74
2.4.6 Dissimilarity for Attributes of Mixed Types 75
2.4.7 Cosine Similarity 77

2.5 **Summary** 79

2.6 **Exercises** 79

2.7 **Bibliographic Notes** 81
Chapter 3: Data Preprocessing 83

3.1 **Data Preprocessing: An Overview** 84
 - 3.1.1 Data Quality: Why Preprocess the Data? 84
 - 3.1.2 Major Tasks in Data Preprocessing 85

3.2 **Data Cleaning** 88
 - 3.2.1 Missing Values 88
 - 3.2.2 Noisy Data 89
 - 3.2.3 Data Cleaning as a Process 91

3.3 **Data Integration** 93
 - 3.3.1 Entity Identification Problem 94
 - 3.3.2 Redundancy and Correlation Analysis 94
 - 3.3.3 Tuple Duplication 98
 - 3.3.4 Data Value Conflict Detection and Resolution 99

3.4 **Data Reduction** 99
 - 3.4.1 Overview of Data Reduction Strategies 99
 - 3.4.2 Wavelet Transforms 100
 - 3.4.3 Principal Components Analysis 102
 - 3.4.4 Attribute Subset Selection 103
 - 3.4.5 Regression and Log-Linear Models: Parametric Data Reduction 105
 - 3.4.6 Histograms 106
 - 3.4.7 Clustering 108
 - 3.4.8 Sampling 108
 - 3.4.9 Data Cube Aggregation 110

3.5 **Data Transformation and Data Discretization** 111
 - 3.5.1 Data Transformation Strategies Overview 112
 - 3.5.2 Data Transformation by Normalization 113
 - 3.5.3 Discretization by Binning 115
 - 3.5.4 Discretization by Histogram Analysis 115
 - 3.5.5 Discretization by Cluster, Decision Tree, and Correlation Analyses 116
 - 3.5.6 Concept Hierarchy Generation for Nominal Data 117

3.6 **Summary** 120

3.7 **Exercises** 121

3.8 **Bibliographic Notes** 123

Chapter 4: Data Warehousing and Online Analytical Processing 125

4.1 **Data Warehouse: Basic Concepts** 125
 - 4.1.1 What Is a Data Warehouse? 126
 - 4.1.2 Differences between Operational Database Systems and Data Warehouses 128
 - 4.1.3 But, Why Have a Separate Data Warehouse? 129
Chapter 7 **Advanced Pattern Mining** 279
7.1 **Pattern Mining: A Road Map** 279
7.2 **Pattern Mining in Multilevel, Multidimensional Space** 283
7.2.1 Mining Multilevel Associations 283
7.2.2 Mining Multidimensional Associations 287
7.2.3 Mining Quantitative Association Rules 289
7.2.4 Mining Rare Patterns and Negative Patterns 291
7.3 **Constraint-Based Frequent Pattern Mining** 294
7.3.1 Metarule-Guided Mining of Association Rules 295
7.3.2 Constraint-Based Pattern Generation: Pruning Pattern Space and Pruning Data Space 296
7.4 **Mining High-Dimensional Data and Colossal Patterns** 301
7.4.1 Mining Colossal Patterns by Pattern-Fusion 302
7.5 **Mining Compressed or Approximate Patterns** 307
7.5.1 Mining Compressed Patterns by Pattern Clustering 308
7.5.2 Extracting Redundancy-Aware Top-k Patterns 310
7.6 **Pattern Exploration and Application** 313
7.6.1 Semantic Annotation of Frequent Patterns 313
7.6.2 Applications of Pattern Mining 317
7.7 **Summary** 319
7.8 **Exercises** 321
7.9 **Bibliographic Notes** 323

Chapter 8 **Classification: Basic Concepts** 327
8.1 **Basic Concepts** 327
8.1.1 What Is Classification? 327
8.1.2 General Approach to Classification 328
8.2 **Decision Tree Induction** 330
8.2.1 Decision Tree Induction 332
8.2.2 Attribute Selection Measures 336
8.2.3 Tree Pruning 344
8.2.4 Scalability and Decision Tree Induction 347
8.2.5 Visual Mining for Decision Tree Induction 348
8.3 **Bayes Classification Methods** 350
8.3.1 Bayes’ Theorem 350
8.3.2 Naïve Bayesian Classification 351
8.4 **Rule-Based Classification** 355
8.4.1 Using IF-THEN Rules for Classification 355
8.4.2 Rule Extraction from a Decision Tree 357
8.4.3 Rule Induction Using a Sequential Covering Algorithm 359
8.5 **Model Evaluation and Selection** 364
 8.5.1 Metrics for Evaluating Classifier Performance 364
 8.5.2 Holdout Method and Random Subsampling 370
 8.5.3 Cross-Validation 370
 8.5.4 Bootstrap 371
 8.5.5 Model Selection Using Statistical Tests of Significance 372
 8.5.6 Comparing Classifiers Based on Cost–Benefit and ROC Curves 373

8.6 **Techniques to Improve Classification Accuracy** 377
 8.6.1 Introducing Ensemble Methods 378
 8.6.2 Bagging 379
 8.6.3 Boosting and AdaBoost 380
 8.6.4 Random Forests 382
 8.6.5 Improving Classification Accuracy of Class-Imbalanced Data 383

8.7 **Summary** 385
8.8 **Exercises** 386
8.9 **Bibliographic Notes** 389

Chapter 9

9 **Classification: Advanced Methods** 393

9.1 **Bayesian Belief Networks** 393
 9.1.1 Concepts and Mechanisms 394
 9.1.2 Training Bayesian Belief Networks 396

9.2 **Classification by Backpropagation** 398
 9.2.1 A Multilayer Feed-Forward Neural Network 398
 9.2.2 Defining a Network Topology 400
 9.2.3 Backpropagation 400
 9.2.4 Inside the Black Box: Backpropagation and Interpretability 406

9.3 **Support Vector Machines** 408
 9.3.1 The Case When the Data Are Linearly Separable 408
 9.3.2 The Case When the Data Are Linearly Inseparable 413

9.4 **Classification Using Frequent Patterns** 415
 9.4.1 Associative Classification 416
 9.4.2 Discriminative Frequent Pattern–Based Classification 419

9.5 **Lazy Learners (or Learning from Your Neighbors)** 422
 9.5.1 k-Nearest-Neighbor Classifiers 423
 9.5.2 Case-Based Reasoning 425

9.6 **Other Classification Methods** 426
 9.6.1 Genetic Algorithms 426
 9.6.2 Rough Set Approach 427
 9.6.3 Fuzzy Set Approaches 428

9.7 **Additional Topics Regarding Classification** 429
 9.7.1 Multiclass Classification 430
11.1.2 Probabilistic Model-Based Clusters 501
11.1.3 Expectation-Maximization Algorithm 505

11.2 **Clustering High-Dimensional Data** 508
 11.2.1 Clustering High-Dimensional Data: Problems, Challenges, and Major Methodologies 508
 11.2.2 Subspace Clustering Methods 510
 11.2.3 Biclustering 512
 11.2.4 Dimensionality Reduction Methods and Spectral Clustering 519

11.3 **Clustering Graph and Network Data** 522
 11.3.1 Applications and Challenges 523
 11.3.2 Similarity Measures 525
 11.3.3 Graph Clustering Methods 528

11.4 **Clustering with Constraints** 532
 11.4.1 Categorization of Constraints 533
 11.4.2 Methods for Clustering with Constraints 535

11.5 **Summary** 538

11.6 **Exercises** 539

11.7 **Bibliographic Notes** 540

Chapter 12 **Outlier Detection** 543

12.1 **Outliers and Outlier Analysis** 544
 12.1.1 What Are Outliers? 544
 12.1.2 Types of Outliers 545
 12.1.3 Challenges of Outlier Detection 548

12.2 **Outlier Detection Methods** 549
 12.2.1 Supervised, Semi-Supervised, and Unsupervised Methods 549
 12.2.2 Statistical Methods, Proximity-Based Methods, and Clustering-Based Methods 551

12.3 **Statistical Approaches** 553
 12.3.1 Parametric Methods 553
 12.3.2 Nonparametric Methods 558

12.4 **Proximity-Based Approaches** 560
 12.4.1 Distance-Based Outlier Detection and a Nested Loop Method 561
 12.4.2 A Grid-Based Method 562
 12.4.3 Density-Based Outlier Detection 564

12.5 **Clustering-Based Approaches** 567

12.6 **Classification-Based Approaches** 571

12.7 **Mining Contextual and Collective Outliers** 573
 12.7.1 Transforming Contextual Outlier Detection to Conventional Outlier Detection 573