Hierarchical and Wavelet-Based Multilinear Models for Multi-Dimensional Visual Data Approximation

Yizhou Yu
Joint work with Qing Wu and Tian Xia
Department of Computer Science
University of Illinois at Urbana-Champaign
Multi-Dimensional Visual Data

- The amount of multi-dimensional visual data is rapidly increasing at an unprecedented rate.

- **Imaging**
 - CCD, images and videos
 - Laser scanning, point clouds
 - Medical Imaging (MRI and DTI), scalar or tensor volume images

- **Simulations**
 - 3D scalar or vector fields in solid and fluid simulations
 - Multi-Dimensional data in appearance modeling and real-time rendering
A Key Challenge

• How can we efficiently
 – Represent
 – Compress
 – Search
 – Analyze
 – Visualize such a vast amount of visual data?

• A possible solution
 – Visual data approximation based on multilinear models
What are Tensors?

• **Multi-Dimensional Matrices**
 - An image ensemble
 \[\Lambda_{\text{ensemble}} \in \mathbb{R}^{I_{\text{row}} \times I_{\text{col}} \times I_{\text{#images}}} \]
 - A BTF
 \[\Lambda_{\text{BTF}} \in \mathbb{R}^{I_{\text{row}} \times I_{\text{col}} \times I_{\text{illum}} \times I_{\text{view}}} \]
An Example of BTFs

Illumination

View
Tensor-Matrix Multiplication

Tensor × Matrix Multiplication
Multilinear Approximation

- **Multilinear Models**
 - Rank-r Approximation

\[\hat{A} = \sum_{j=1}^{r} b_j \times_1 u_j^{(1)} \times_2 u_j^{(2)} \times \cdots \times_N u_j^{(N)} \]

- Rank-(R_1, R_2, \ldots, R_N) Approximation

\[\tilde{A} = B \times_1 U^{(1)} \times_2 U^{(2)} \times \cdots \times_N U^{(N)} \]
Multilinear Approximation

- Rank-\((R_1, R_2, \ldots, R_N)\) Approximation

\[A \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}, \quad \tilde{A} = \arg \min_{\hat{A}} \| A - \hat{A} \|^2 \]

\[\tilde{A} = B \times_1 U^{(1)} \times_2 U^{(2)} \times \cdots \times_N U^{(N)}, \quad U^{(i)} \in \mathbb{R}_i \times R_i, \quad i \in (1, N) \]

A special case:
\[C \in \mathbb{R}^{I_1 \times I_2}, \quad SVD(C) = USV^T = S \times_1 U \times_2 V \]

- Alternative Least Squares (ALS)

- Initialization
 - N-mode SVD vs. \[U^{(n)}_0 = \begin{bmatrix} I_{R_n} & 0 \end{bmatrix}^T \] (random numbers)
Related Methods

• **PCA and tensor approximation** (*adaptive bases*)
 - [Kroonenberg and Leeuw 1980]
 - [Lathauwer et al 2000], [Wang et al 2005]

• **Wavelet analysis** (*fixed bases*)
 - Wavelet analysis [Antonini et al 1992], [Muraki 1993]
 - Wavelet packet [Meyer et al 2000]
 - Oriented wavelet bases
Applications

- Precomputed Radiance Transfer and Real-Time Rendering

[Tsai and Shih 2006]
Applications

• Nearest Neighbor Search
Tensor Construction

• **Datum (Image) as Is**

 – An image ensemble
 \[\Lambda_{ensemble} \in \mathbb{R}^{I_{row} \times I_{col} \times I_{#images}} \]

 – A BTF
 \[\Lambda_{BTF} \in \mathbb{R}^{I_{row} \times I_{col} \times I_{illumin} \times I_{view}} \]

• **Datum (Image) as Vector**

 – Traditional PCA

 – TensorTexture, SIGGRAPH 2004

 \[M_{ensemble} \in \mathbb{R}^{(I_{row}I_{col}) \times I_{#images}} \]

 \[A_{BTF} \in \mathbb{R}^{(I_{row}I_{col}) \times I_{illumin} \times I_{view}} \]

[Wang et al., SIGGRAPH 2005]
Advantages of Datum-as-Is

- Spatial locality and redundancy

It encodes:
1. Pixel-wise covariance
2. Row/column covariance
Rank-1 Basis Images
Level-2 Basis Images for the LEGO BTF

Reconstructed Images
RMSE Errors: Lichen and Velvet

![Graph showing RMSE errors for Lichen and Velvet with different compression ratios.]
Original	PCA	Modified TensorTexture
TensorTexture

Our Method
BTF Mapping and Rendering

Vase and Sponge

Textures on the vase and the sponge are reconstructed from compressed BTF tensors
(1 strong moving point light source and 2 weak static ones)
Characteristics of Visual Data

- Multiple scales
- Spatially inhomogeneous

Fourier Transform

- Second harmonic
- First harmonic
- Fundamental
- Composite
Hierarchical Transformation and Approximation

- **Top-down hierarchical transformation (lossless)**
 - Tensor (ensemble) approximation at the current level
 - Subdivide every residual tensor into 2^N smaller tensors by bisecting each dimension
 - Repeat until the subdivided tensors are sufficiently small

[Wu et al. TVCG 2008]
Hierarchical Transformation and Approximation

• **Lossy approximation**
 - Pruning residual tensors when their energy is below a threshold
 - Quantization on core tensor coefficients
 • 8-20 bits per coefficient

• **How to determine the reduced ranks at each level?**
 - Optimal solution is expensive
 - Choose \(r_1, r_2, \ldots, r_N \) for the top level
 - On subsequent levels, each of the ranks follows a geometric progression.
Progressive Approximation

different levels of approximation
Correlation among Residual Tensors

- Strong correlation among subdivided tensors
- Correlation among color channels and vector components
Tensor Ensemble Approximation

• **Collective tensor approximation**
 - Rank-(R_1, R_2, \ldots, R_N) approximation of $A_1, A_2, \ldots, A_m \in \mathbb{R}^{I_1 \times I_2 \times \ldots \times I_N}$
 - Pile A_1, A_2, \ldots, A_m into a $(N+1)$-th order tensor G
 - Perform rank- (R_1, R_2, \ldots, R_N) approximation of G ($r < m$)
Tensor Ensemble Approximation

• (Sub-)tensors share basis matrices to reduce basis overhead and improve compression efficiency

original

individual
PSNR 20.13

ensemble
PSNR 26.17

87.5% compression
Experiments and Results

• **Input Data**
 – 4D BTFs
 • *Sponge, lichen*
 – 3D medical images in the Visible Human dataset
 • *Head, abdomen*
 – 4D time-varying scientific dataset
 • *Velocity and energy field*

• **Compression ratio and PSNR**
 – Bases are overheads
 – Small wavelet coefficients are discarded
Experimental Results

<table>
<thead>
<tr>
<th>Original</th>
<th>Single-level</th>
<th>Hierarchical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSNR 29.89</td>
<td>PSNR 31.05</td>
</tr>
</tbody>
</table>

93.6% compression
Experimental Results

(a) Original

(b) Wavelet
98.2% Compression
PSNR 16.77

(c) Single-Level
98.2% Compression
PSNR 24.05

(d) Multi-Level
98.2% Compression
PSNR 25.21

(e) Wavelet Packet
98.2% Compression
PSNR 20.54

(f) Single-Level
99.975% Compression
PSNR 20.11

(g) Multi-Level
99.975% Compression
PSNR 21.01
Experimental Results

(a) Original
(b) Wavelet
PSNR 35.12
(c) Single-level
PSNR 43.56
(d) Multilevel
PSNR 45.41
(e) Wavelet Packet
PSNR 39.48
(f) Residual of (c)
(g) Residual of (d)
Experimental Results

Visible Human

Rocket Jets Simulation
Conclusion and Limitation

• For high-dimensional datasets, the gained efficiency surpasses the basis overhead

• For 2D images, the basis overhead cannot be tolerated

Multilinear models suffer basis overhead and sharp-edge smoothing for 2-D images. The resolution of LENA is 256x256 and the three color channels are processed as an ensemble. A rank-(32,32) approximation imposes $\frac{2(256^2)}{3(32^2)+2(256^2)} = 84.21\%$ overhead at 90.1% compression. Furthermore, it blurs sharp edges compared with wavelet transform.
Wavelet-Based Hybrid Multilinear Models

- **Multilinear Models**
 - Compact approximation with optimal adaptive bases
 - Large basis overhead for low-dimensional images

- **Wavelet (Packet) Transforms**
 - Suboptimal fixed bases
 - No basis overhead
 - Feature sensitive filters
 - Sparse coefficients

- **Hybrid models**
 - Clustered tensor approximation of sparse wavelet coefficients
 - [Wu et al., ICIP 2008]
Overview

• Hybrid Multilinear Models in the Wavelet Domain
 – Subdivide high-frequency subbands so that most blocks get pruned
 – Group remaining blocks into clusters
 – Approximate each cluster as a tensor ensemble
Subband Data Organization

- **Block Subdivision**
 - High-frequency subbands are usually very sparse
 - By subdividing them into small blocks we can discard most blocks and focus on those with a significant energy
 - We use 2x2 blocks in our experiments

- **Block Flattening**
Subband Data Organization

- **Channel Stacking**
 - Different color channels have strong correlation
- **Subband Stacking**
 - Same-level high-frequency subbands have strong correlation
- **Organized Tensors**
 - A collection of tensors for each level
 - Always 3rd order: spatial, subbands, color channels (could be degenerate)
Subband Data Organization

- Wavelet Packet Transform
Tensor Clustering

• An EM algorithm
 – Initialization
 • Random
 • Use GPCA result
 – Iteratively refine clusters
 • Update basis matrices for every cluster
 • Project each tensor into every cluster using its basis matrices and update the cluster membership of the tensor according to projection errors
 – Stop when clusters do not change
Rank Optimization

- **Tensor Approximation**
 - How to determine the ranks?
 \[
 A_{n_b \times n_s \times n_c} = B_{n_b \times n_s \times n_c} \times_1 U^{(b)}_{n_b \times n_b} \times_2 U^{(s)}_{n_s \times n_s} \times_3 U^{(c)}_{n_c \times n_c}
 \]
 \[
 MSE = \frac{1}{n_b n_s n_c} \left(\sum_{i=1}^{n_b} \sum_{j=1}^{n_s} \sum_{k=1}^{n_c} B_{ijk}^2 - \sum_{i=1}^{r_b} \sum_{j=1}^{r_s} \sum_{k=1}^{r_c} B_{ijk}^2 \right) \leq \epsilon^2
 \]
 - Search for the most economic ranks while controlling MSE
 \[
 (r_b, r_s, r_c) = \text{argmin } n_b r_b + n_s r_s + n_c r_c + r_b r_s r_c, \text{s.t.}
 \]
 \[
 \sum_{i=1}^{r_b} \sum_{j=1}^{r_s} \sum_{k=1}^{r_c} B_{ijk}^2 \geq \sum_{i=1}^{n_b} \sum_{j=1}^{n_s} \sum_{k=1}^{n_c} B_{ijk}^2 - n_b n_s n_c \epsilon^2,
 \]
 \[
 1 \leq r_b \leq n_b, 1 \leq r_s \leq n_s, 1 \leq r_c \leq n_c.
 \]
Rank Optimization

- Tensor Ensemble Approximation

\[A \approx B \times_1 U^{(b)}_{n_b \times r_b} \times_2 U^{(s)}_{n_s \times r_s} \times_3 U^{(c)}_{n_c \times r_c} \times_4 U^{(t)}_{n_t \times r_t} \]

\[
(r_b, r_s, r_c, r_t) = \text{argmin} \quad n_b r_b + n_s r_s + n_c r_c + n_t r_t + r_b r_s r_c r_t, \text{ s.t.} \]

\[
\sum_{i=1}^{r_b} \sum_{j=1}^{r_s} \sum_{k=1}^{r_c} \sum_{h=1}^{r_t} B_{ijkh}^2 \geq \sum_{i=1}^{n_b} \sum_{j=1}^{n_s} \sum_{k=1}^{n_c} \sum_{h=1}^{n_t} B_{ijkh}^2 - n_b n_s n_c n_t \epsilon^2
\]

\[1 \leq r_b \leq n_b, 1 \leq r_s \leq n_s, 1 \leq r_c \leq n_c, 1 \leq r_t \leq n_t. \]
Experiments and Results

• 2D Images
 – SCENE, LENA, BABOO

• 3D Visible Human Medical Datasets
 – From US National Library of Medicine
 – HEAD, ABDOMEN
Experimental Results

Input

Multilinear, PSNR=19.18
97.5% compression

Wavelet, PSNR=20.95

Wavelet Packet, PSNR=22.12

Wavelet+HM, PSNR=22.01

Wavelet Packet+HM, PSNR=23.11
Experimental Results

Input

Wavelet, PSNR=26.95

Wavelet Packet, PSNR=27.95

Wavelet Packet+HM, PSNR=30.21

Wavelet+HM, PSNR=30.18

98% compression
Experimental Results

Input

Wavelet, PSNR=24.95

Wavelet Packet, PSNR=26.18

Wavelet+HM, PSNR=27.23

Wavelet Packet+HM, PSNR=28.05

98% compression
Experimental Results

Input

Multilinear PSNR=26.44

Wavelet Packet PSNR=29.69

Wavelet Packet+HM PSNR=30.75

99.5% compression
Experimental Results

- baboo
 - Wavelet
 - Wavelet Packet
 - Wavelet + Tensor
 - Wavelet Packet + Tensor

- abdomen
 - Wavelet
 - Wavelet Packet
 - Wavelet + Tensor
 - Wavelet Packet + Tensor
Acknowledgments

- UIUC: Qing Wu, Tian Xia, Hongcheng Wang, Narendra Ahuja, Lin Shi
- NSF
- UIUC Research Board
Thank You!