Object detection
Challenges of object detection

• Detector must evaluate tens of thousands of location/scale combinations

• Positive instances are rare: 0–10 per image
 • A megapixel image has $\sim 10^6$ pixels and a comparable number of candidate object locations
 • For computational efficiency, we should try to spend as little time as possible on the negative windows
 • To avoid having a false positive in every image, our false positive rate has to be less than 10^{-6}
Let’s start with face detection
Let’s start with face detection

Source: Boris Babenko
Let’s start with face detection

Things iPhoto thinks are faces
Sliding window framework
The Viola/Jones Face Detector

• A seminal approach to real-time object detection
• Training is slow, but detection is very fast
• Key ideas
 • Integral images for fast feature evaluation
 • Boosting for feature selection
 • Attentional cascade for fast rejection of non-face windows

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004.
Image Features

“Rectangle filters”

\[\text{Value} = \sum (\text{pixels in white area}) - \sum (\text{pixels in black area}) \]
Example
Fast computation with integral images

- The *integral image* computes a value at each pixel \((x,y)\) that is the sum of the pixel values above and to the left of \((x,y)\), inclusive.

- This can quickly be computed in one pass through the image.
Computing the integral image
Computing the integral image

Cumulative row sum: $s(x, y) = s(x-1, y) + i(x, y)$

Integral image: $ii(x, y) = ii(x, y-1) + s(x, y)$

MATLAB: $ii = \text{cumsum}(\text{cumsum}(\text{double}(i)), 2)$;
Computing sum within a rectangle

- Let A, B, C, D be the values of the integral image at the corners of a rectangle.
- What is the sum of pixel values within the rectangle?
 \[\text{sum} = A - B - C + D \]
- Only 3 additions are required for any size of rectangle!
Computing a rectangle feature
Feature selection

- For a 24x24 detection region, the number of possible rectangle features is \(~160,000!\)
Feature selection

- For a 24x24 detection region, the number of possible rectangle features is ~160,000!
- At test time, it is impractical to evaluate the entire feature set
- Can we create a good classifier using just a small subset of all possible features?
Boosting

- **Boosting** is a classification scheme that combines *weak learners* into a more accurate *ensemble classifier*
- Weak learners based on rectangle filters:

\[
h_t(x) = \begin{cases}
1 & \text{if } p_t f_t(x) > p_t \theta_t \\
0 & \text{otherwise}
\end{cases}
\]

- Ensemble classification function:

\[
C(x) = \begin{cases}
1 & \text{if } \sum_{t=1}^{T} \alpha_t h_t(x) > \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\
0 & \text{otherwise}
\end{cases}
\]
Training procedure

• Initially, weight each training example equally

• In each boosting round:
 • Find the weak learner that achieves the lowest *weighted* training error
 • Raise the weights of training examples misclassified by current weak learner

• Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
 • Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost)

Boosting for face detection

- First two features selected by boosting:

This feature combination can yield 100% detection rate and 50% false positive rate
Boosting pros and cons

Pros:
- Integrates classifier training with feature selection
- Complexity of training is linear in the number of training examples
- Flexibility in the choice of weak learners, boosting scheme
- Testing is fast
- Easy to implement

Cons:
- Needs many training examples
- Training is slow
- Often doesn’t work as well as SVM or a deep neural network (especially for many-class problems)
Boosting for face detection

- A 200-feature classifier can yield 95% detection rate and a false positive rate of 1 in 14084

Not good enough!

Receiver operating characteristic (ROC) curve
Attentional cascade

- We start with simple classifiers which reject many of the negative sub-windows while detecting almost all positive sub-windows.
- Positive response from the first classifier triggers the evaluation of a second (more complex) classifier, and so on.
- A negative outcome at any point leads to the immediate rejection of the sub-window.
Attentional cascade

- Chaining together classifiers is a good way to drive down the false positive rate.
Attentional cascade

- The detection rate and the false positive rate of the cascade are found by multiplying the respective rates of the individual stages.
- A detection rate of 0.9 and a false positive rate on the order of 10^{-6} can be achieved by a 10-stage cascade if each stage has a detection rate of 0.99 ($0.99^{10} \approx 0.9$) and a false positive rate of about 0.30 ($0.3^{10} \approx 6 \times 10^{-6}$).
Training the cascade

• Set target detection and false positive rates for each stage

• Keep adding features to the current stage until it meets the target rates on the validation set
 • Need to lower AdaBoost threshold to maximize detection (as opposed to minimizing total classification error)

• If the overall false positive rate is not low enough, then add another stage

• Use false positives from current stage as the negative training examples for the next stage
The implemented system

- **Training Data**
 - 5000 faces
 - All frontal, rescaled to 24x24 pixels
 - 300 million non-faces
 - 9500 non-face images
 - Faces are normalized
 - Scale, translation

- **Many variations**
 - Across individuals
 - Illumination
 - Pose
System performance

- Training time: “weeks” on 466 MHz Sun workstation
- 38 layers, total of 6061 features
- Average of 10 features evaluated per window on test set
- “On a 700 Mhz Pentium III processor, the face detector can process a 384 by 288 pixel image in about .067 seconds”
 - 15 Hz
 - 15 times faster than previous detector of comparable accuracy (Rowley et al., 1998)
Output of Face Detector on Test Images
Related detection tasks

Facial Feature Localization

Profile Detection

Gender classification
Review: Viola/Jones detector

- Rectangle features
- Integral images for fast computation
- Boosting for feature selection
- Attentional cascade for fast rejection of negative windows
Next step: Generic object detection
Histograms of oriented gradients (HOG)

- Partition image into blocks and compute histogram of gradient orientations in each block

Pedestrian detection with HOG

- Train a pedestrian template using a linear support vector machine

Pedestrian detection with HOG

- Train a pedestrian template using a linear support vector machine
- At test time, convolve feature map with template
- Find local maxima of response
- For multi-scale detection, repeat over multiple levels of a HOG pyramid

Example detections

[Dalal and Triggs, CVPR 2005]
Discriminative part-based models

- Single rigid template usually not enough to represent a category
 - Many objects (e.g. humans) are articulated, or have parts that can vary in configuration

- Many object categories look very different from different viewpoints, or from instance to instance
Discriminative part-based models

Root filter Part filters Deformation weights

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan,
Object Detection with Discriminatively Trained Part Based Models, PAMI 32(9), 2010
Discriminative part-based models

Multiple components

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan,
Object Detection with Discriminatively Trained Part Based Models, PAMI 32(9), 2010
Discriminative part-based models

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan,
Object Detection with Discriminatively Trained Part Based Models, PAMI 32(9), 2010
PASCAL VOC Challenge (2005-2012)

• 20 challenge classes:
 • Person
 • Animals: bird, cat, cow, dog, horse, sheep
 • Vehicles: aeroplane, bicycle, boat, bus, car, motorbike, train
 • Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

• Dataset size (by 2012): 11.5K training/validation images, 27K bounding boxes, 7K segmentations

http://host.robots.ox.ac.uk/pascal/VOC/
Object Detection Evaluation

- Testing: for each class, predict bounding boxes with confidences
- Evaluation scheme:
 - True detection: ≥ 0.5 Intersection over Union (IoU), not a duplicate
 - **Precision**: $\#$ true detections / $\#$ detections
 - **Recall**: $\#$ true detections / $\#$ true positives
 - **AP**: area under the recall-precision curve
 - **mAP**: mean AP over all classes

Source: D. Hoiem
Object detection progress

PASCAL VOC

Source: R. Girshick