A Proof of Dudley’s Convex Approximation

Sariel Har-Peled∗ Mitchell Jones†

December 2, 2017

Abstract

We provide a self contained proof of a result of Dudley [Dud74], which shows that a bounded convex-body in \mathbb{R}^d can be ε-approximated, by the intersection of $O_d(\varepsilon^{-(d-1)/2})$ halfspaces, where O_d hides constants that depends on d.

1. Statement and proof

For a convex body $C \subseteq \mathbb{R}^d$, let C_{ε} denote the set of all points in \mathbb{R}^d in distance at most $\leq \varepsilon$ from C. In particular, $C \subseteq C_{\varepsilon}$, and the Hausdorff distance between C and C_{ε} is ε.

Theorem 1.1 ([Dud74]). Let C be a (closed) convex body in \mathbb{R}^d, containing the unit ball of radius one centered at the origin, such that C is contained in a ball of radius d centered at the origin. For a parameter $\varepsilon > 0$, one can compute a convex body D, which is the intersection of $O_d(1/\varepsilon^{(d-1)/2})$ halfspaces, such that $C \subseteq D \subseteq C_{\varepsilon}$.

Proof: Let S be the sphere of radius $2d$ centered at the origin, and let Q be a maximal δ-packing of S, where $\delta = \sqrt{d\varepsilon}/8$. We remind the reader that a set $Q \subseteq S$ is a δ-packing, if

(i) for any point $p \in S$, there is a point $q \in Q$, such that $\|p - q\| \leq \delta$, and
(ii) for any two points $q, q' \in Q$, we have that $\|q - q'\| \leq \delta$.

In particular, it is easy to verify that $|Q| = O_d((d/\delta)^{d-1}) = O_d(\varepsilon^{-(d-1)/2})$.

Next, for every point $q \in Q$, let $n(q)$ be its nearest neighbor in C (which naturally lies on ∂C), and consider the halfspace that passes through $n(q)$, contains C, and is orthogonal to the vector $q - n(q)$. Let $h_C(q)$ denote this halfspace. Let $D = \bigcap_{q \in Q} h_C(q)$. We claim that D is the desired approximation.

First, it is clear that $C \subseteq D$. As for the other direction, consider any point $p \in \partial C$, and consider a normal to C at p, denoted by v. Consider the ray emanating from p in the direction of v. It hits S at a point p', and let $q \in Q$, be the nearest point in the packing Q to it. Next, consider $n(q)$. It is easy to verify that $\|p - n(q)\| \leq \|p' - q\| \leq \delta$ (because projecting to nearest-neighbor is a contraction).

∗Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA; sariel@illinois.edu; http://sarielhp.org/. Work on this paper was partially supported by a NSF AF awards CCF-1421231, and CCF-1217462.

†Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA; mfjones2@illinois.edu; http://mfjones2.web.engr.illinois.edu/.
We are interested in angle between \(v \) and \(n(q) - q \). To this end, observe that \(\|p' - q\| \leq \delta, \|p - n(q)\| \leq \delta, \|p - p'\| \geq d \), and \(\|q - n(q)\| \geq d \). Let \(x = q - n(q) \) and \(y = p' - p \). Notice that

\[
\ell = \|x - y\| = \|q - n(q) - (p' - p)\| = \|(p - n(q)) + (q - p')\| \\
\leq \|p - n(q)\| + \|q - p'\| \leq 2\delta.
\]

Observe that \(\|x\| \leq \text{radius}(S) = 2d \) and \(\|y\| \leq 2d \). Let \(\triangle \) be the triangle formed by the origin, \(x \) and \(y \). The height of \(\triangle \) at \(x \) is bounded by \(\ell \). As such, \(\text{area}(\triangle) \leq \frac{1}{2} \max(\|x\|, \|y\|) \text{height}(\triangle) \leq d \text{height}(\triangle) \leq d\ell \leq 2d\delta \).

Let \(\gamma \) denote the angle between \(x \) and \(y \). We have that

\[
\text{area}(\triangle) = \frac{1}{2} \|x\| \|y\| \sin \gamma \leq 2d\delta \quad \Rightarrow \quad \sin \gamma \leq \frac{4\delta}{d}.
\]

Let \(h \) be the three dimensional affine subspace that is spanned by the vectors \(x, y, p - n(q) \), and passes through \(n(q) \). Clearly, \(p \in h \). Now, \(H_q = h \cap h_C(q) \) and \(H_{p'} = h \cap h_C(p') \) are two halfspaces contained in \(h \). The angle between their bounding planes is exactly \(\gamma \) (as their normals are \(x \) and \(y \)). In particular, let \(f \subseteq h \) be the two dimensional plane that contains the points \(n(q), q, p \). Let \(\ell \) be the line \(\partial H_q \cap \partial H_{p'} \), and let \(t \) be the intersection of \(f \) with \(\ell \).

The distance of \(p \) from \(\partial h_C(q) \) bounds the distance of \(p \) from the boundary of \(D \). This distance in turn is bounded by the distance from \(p \) to the line \(\ell' \) spanned by \(n(q) \) and \(t \). Let \(\beta \) be the angle between \(\ell' \) and \(pt \) (see figure). It is easy to verify that as \(f \) contains the vector \(x \), this implies that \(\beta \leq \gamma \). This in turn implies that \(\angle tn(q)p \leq \beta \leq \gamma \). Using the packing property that \(\delta \leq \sqrt{d\varepsilon/8} \), we have

\[
\text{dist}(p, \partial D) \leq \text{dist}(p, \ell') \leq \|p - n(q)\| \sin \beta \leq \delta \sin \gamma \leq \delta \frac{4\delta}{d} \leq \frac{\varepsilon}{2}.
\]

The distance of any point of \(\partial C_{\bar{\beta}\varepsilon} \) from \(C \) is at least \(\varepsilon/2 \). It follows that \(D \subseteq C_{\bar{\beta}\varepsilon} \).

\[\blacksquare\]

References