Privacy Risk in Anonymized Heterogeneous Information Networks
(How to Break Anonymity of the KDD Cup 2012 Dataset)

Aston Zhang¹, Xing Xie², Kevin C.-C. Chang¹
Carl A. Gunter¹, Jiawei Han¹, Xiaofeng Wang³

University of Illinois at Urbana-Champaign¹
Microsoft Research²
Indiana University at Bloomington³
K-Anonymity

- Any tuple can be re-identified with a probability no higher than 1/K
 - AAA BBB, 3-anonymity
 - AABBBB, 2-anonymity
 - ABBB, 1-anonymity
K-Anonymity?

• If the adversary (attacker) is only interested in breaking privacy of tuples with value B...
 – AAA BBBB, 3-anonymity
 – ABBBBB, 4-anonymity?
 – ABBBBBB, 5-anonymity?
Limitations of K-Anonymity

T_{1000} (1000 tuples of the same value: AAA...AA): 1000-anonymity
T_2 (500 pairs of same values: AABBCCDD...): 2-anonymity

Consider injecting a globally unique tuple t^*

T_{1000}^* (1000 same tuples: AAAAAA...AAAA t^*)
T_2^* (500 pairs of same values: AABBCCDD...t^*)

• Are their security level really the same in terms of k-anonymity?
K-Anonymity: Worst Says All
Different Individuals May Have Different Privacy Needs
Our Proposed Privacy Risk

• Individual Privacy Risk – *Allow us to differentiate!*

• Aggregate *Individual Privacy Risk* to obtain Dataset Privacy Risk

 – Mathematical Factor

 – Social Factor
• Privacy risk of tuple t_i in dataset T:

$$\mathcal{R}(t_i) = \frac{l(t_i)}{k(t_i)}$$

Individual Privacy Risk

- $l(t_i)$: loss function (social component)
- $k(t_i)$: the number of tuples in T with the same value of t_i (math component)

• Privacy risk of dataset T:

$$\mathcal{R}(T) = \frac{\sum_{i=1}^{N} \mathcal{R}(t_i)}{N}$$

Dataset Privacy Risk

- N: the size of dataset T (the number of tuples in T)
Lemma 1: Given dataset T with cardinality $C(T)$, for each tuple t_i in T, assuming the loss function is independent of $1/k(t_i)$ with mean value μ, the expected privacy risk

$$E(R(T)) = \frac{\mu C(T)}{N}$$
• **Theorem 1:** The privacy risk $R(T)$ of dataset T is

$$R(T) = \frac{C(T)}{N}, \quad (R(T) \in \left[\frac{1}{N}, 1 \right])$$

- N: the number of tuples in T
- $C(T)$: cardinality of T —— number of distinct (combined) attribute values describing tuples

 - $T=ABCDE$: $C(T)=5$, $R(T)=1$
 - $T'=AAAAA$: $C(T')=1$, $R(T')=1/5$
 - $T''=AAA$: $C(T'')=1$, $R(T'')=1/3$
Privacy Risk = \(\frac{C(T)}{N} \), Better Interpretation

\(T_{1000} \) (1000 same tuples: AAAAAA...AAAA)
- 1000-anonymity (Privacy Risk: 1/1000)

\(T_2 \) (500 pairs of same values: AABBCCDD...)
- 2-anonymity (Privacy Risk: 500/1000)

Inject globally unique tuple \(t^* \)

\(T_{1000}^* \) (1000 same tuples: AAAAAA...AAAA\(t^* \))
- 1-anonymity (Privacy Risk: 2/1001)

\(T_2^* \) (500 pairs of same values: AABBCCDD...\(t^* \))
- 1-anonymity (Privacy Risk: 501/1001)

\(R(T_{1000}^*) < R(T_2^*) \)
How Bad Is Our Privacy in HIN?

- Heterogeneous Information Networks (HIN)
We Live In a More Connected World

• Heterogeneous Information Networks (HIN)
 – Multiple types of entities (nodes) or links (edges)
 – Present in
 • social media (Twitter)
 • medical information systems (EMR)
 • academic information systems (DBLP)
 • and more...
Heterogeneous Information Networks in Social Media (KDD Cup 2012 Dataset)
Network Schema
Meta-Paths

- **user mention path**: User \(\xrightarrow{\text{post}} \) Tweet \(\xrightarrow{\text{mention}} \) User or User \(\xrightarrow{\text{post}} \) Comment \(\xrightarrow{\text{mention}} \) User (short-circuited feature: mention strength)

- **user retweet path**: User \(\xrightarrow{\text{post}} \) Tweet \(\xrightarrow{\text{retweet}} \) Tweet \(\xrightarrow{\text{posted by}} \) User (short-circuited feature: retweet strength)

- **user comment path**: User \(\xrightarrow{\text{post}} \) Comment \(\xrightarrow{\text{comment}} \) Tweet \(\xrightarrow{\text{posted by}} \) User or User \(\xrightarrow{\text{post}} \) Comment \(\xrightarrow{\text{comment}} \) Comment \(\xrightarrow{\text{posted by}} \) User (short-circuited feature: comment strength)

- **user follow path**: User \(\xrightarrow{\text{follow}} \) User
The neighbors of the target entity A1X are generated along target meta paths
• **Theorem 2**: For power-law distribution of the user out-degree, the lower and upper bounds for the expected heterogeneous information network cardinality grows faster than double exponentially with respect to the max. distance of utilized neighbors.

Privacy Risk = $C(T)/N$
Privacy Risk Increases With More Link Types

Table 1: Privacy Risk of the Anonymized t.qq Dataset (density: 0.01, size: 1000) increases as the amount of utilized target network schema link types increases (in percentage)

<table>
<thead>
<tr>
<th>Types of Links</th>
<th>Max. Distance</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td></td>
<td>84.4</td>
<td>93.8</td>
<td>93.8</td>
</tr>
<tr>
<td>m</td>
<td></td>
<td>85.4</td>
<td>93.6</td>
<td>93.8</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>87.6</td>
<td>93.6</td>
<td>93.9</td>
</tr>
<tr>
<td>r</td>
<td></td>
<td>90.2</td>
<td>94.2</td>
<td>94.3</td>
</tr>
<tr>
<td>f-m</td>
<td></td>
<td>96.0</td>
<td>98.5</td>
<td>98.6</td>
</tr>
<tr>
<td>f-c</td>
<td></td>
<td>95.6</td>
<td>98.5</td>
<td>98.5</td>
</tr>
<tr>
<td>f-r</td>
<td></td>
<td>96.8</td>
<td>98.5</td>
<td>98.5</td>
</tr>
<tr>
<td>m-c</td>
<td></td>
<td>89.9</td>
<td>94.0</td>
<td>94.2</td>
</tr>
<tr>
<td>m-r</td>
<td></td>
<td>91.2</td>
<td>94.4</td>
<td>94.5</td>
</tr>
<tr>
<td>c-r</td>
<td></td>
<td>91.8</td>
<td>94.4</td>
<td>94.5</td>
</tr>
<tr>
<td>f-m-c</td>
<td></td>
<td>96.5</td>
<td>98.5</td>
<td>98.6</td>
</tr>
<tr>
<td>f-m-r</td>
<td></td>
<td>96.9</td>
<td>98.6</td>
<td>98.6</td>
</tr>
<tr>
<td>f-c-r</td>
<td></td>
<td>96.8</td>
<td>98.6</td>
<td>98.6</td>
</tr>
<tr>
<td>m-c-r</td>
<td></td>
<td>92.3</td>
<td>94.5</td>
<td>94.6</td>
</tr>
<tr>
<td>f-m-c-r</td>
<td></td>
<td>96.9</td>
<td>98.6</td>
<td>98.6</td>
</tr>
</tbody>
</table>

*f: follow; m: mention; r: retweet; c: comment

*Max. Distance n: max. distance of utilized neighbors to target entities

*n = 0: only target entities’ profiles are utilized and risk is always 1.1%
Privacy Risk Increases With More Link Types
DeHIN Algorithm to Prey on Privacy Risk in HIN

Algorithm 1 De-anonymizing entity v' in Heterogeneous Information Networks: DeHIN (G, G', T_G^*, v', l)

Inputs: $G = (V, E)$: public graph, $G' = (V', E')$: private graph, $T_G^* = (E^*, L^*)$: target network schema, $v' \in G'$: target entity, l: specified utilized level of neighborhoods

Outputs: \mathcal{C}: candidate set from public data that match v'

1. $\mathcal{C} \leftarrow \emptyset$
2. for all $v \in V$ IN $G = (V, E)$ do
 3. if entity_attribute_match(v', v, E^*) then
 4. if $l > 0$ then
 5. if link_match(l, v', v, G, G', T_G^*) then
 6. $\mathcal{C} \leftarrow \mathcal{C} \cup \{v\}$
 7. end if
 8. else
 9. $\mathcal{C} \leftarrow \mathcal{C} \cup \{v\}$
 10. end if
 11. end if
3. end for
4. return \mathcal{C}
DeHIN Algorithm to Prey on Privacy Risk in HIN

Algorithm 2 Comparing neighborhoods of two entities \(v' \) and \(v \) via heterogeneous links: \(\text{link_match}(l, v', v, G, G', T) \)

Inputs:
- \(l \): level of neighborhoods utilized, \(v' \in G' \): target entity, \(v \): the entity in public graph under comparison,
- \(G = (V, E) \): public graph, \(G' = (V', E') \): private graph,
- \(T = (\mathcal{E}, \mathcal{C}) \): target network schema

Outputs: \(\text{is_match} \): a boolean value

\[
\text{is_match} \leftarrow \text{true}
\]
\[
G_B \leftarrow \emptyset \quad \text{(The bipartite graph modeling neighborhood matching)}
\]
\[
\mathcal{N}_v(v', \mathcal{L}_t) \leftarrow v'\text{'s neighborhoods via the link type } \mathcal{L}_t
\]
\[
\mathcal{N}_v(v, \mathcal{L}_t) \leftarrow v\text{'s neighborhoods via the link type } \mathcal{L}_t
\]
for all link type \(\mathcal{L}_i \) IN \(\mathcal{L}^* \) do
 for all neighbor \(n'_i \) IN \(\mathcal{N}_v(v', \mathcal{L}_t) \) do
 \(\emptyset \leftarrow C(n'_i) \) \quad (\(C(n'_i) \): candidate set for \(n'_i \))
 for all neighbor \(n_i \) IN \(\mathcal{N}_v(v, \mathcal{L}_t) \) do
 if \(\text{link_attribute_match}(n'_i, n_i) \) then
 if \(\text{entity_attribute_match}(n'_i, n_i) \) then
 if \(l = 1 \) then
 \(C(n'_i) \leftarrow n'_i \)
 else
 if \(\text{link_match}(l - 1, v', v, G, G', T) \) then
 \(C(n'_i) \leftarrow n'_i \)
 end if
 end if
 end if
 end if
 end for
 end for
end for
\[
G_B \leftarrow C(n'_i)
\]
end for
if \(\text{max_bipartite_match}(G_B) \neq |\mathcal{N}_v(v', \mathcal{L}_t)| \) then
 \(\text{is_match} \leftarrow \text{false} \)
end if
return \(\text{is_match} \)
Break Anonymity of the KDD Cup 2012 Dataset

Advantages: Exploit the identified privacy risk without requiring creating new accounts or relying on easily-detectable graph structures in a large-scale network [BDK’07, NV’09]
Experiments – The Existing Defense

Modified based on [Wu and Ying’11]
Experiments – Key Measures

\[
Precision = \frac{\sum_{i=1}^{V'} s(v'_i)}{|V'|}
\]

\[
Reduction \ Rate^8 = \frac{1}{|V'|} \sum_{i=1}^{V'} \left(1 - \frac{|C(v'_i)|}{|V|}\right)
\]

\[
density = \frac{|E|}{m|V|^2 + (|\mathcal{L}| - m)|V|(|V| - 1)}
\]
DeHIN Performs Better on Denser Networks by Utilizing Longer-Distance Neighbors

<table>
<thead>
<tr>
<th>Density</th>
<th>Max. Distance 0</th>
<th></th>
<th>Max. Distance 1</th>
<th></th>
<th>Max. Distance 2</th>
<th></th>
<th>Max. Distance 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Precision</td>
<td>Reduction Rate</td>
<td></td>
<td>Precision</td>
<td>Reduction Rate</td>
<td></td>
<td>Precision</td>
<td>Reduction Rate</td>
</tr>
<tr>
<td>0.001</td>
<td>4.1</td>
<td>99.836</td>
<td></td>
<td>12.6</td>
<td>99.848</td>
<td></td>
<td>12.6</td>
<td>99.848</td>
</tr>
<tr>
<td>0.002</td>
<td>5.1</td>
<td>99.925</td>
<td></td>
<td>22</td>
<td>99.947</td>
<td></td>
<td>22.7</td>
<td>99.948</td>
</tr>
<tr>
<td>0.003</td>
<td>6.5</td>
<td>99.917</td>
<td></td>
<td>32.8</td>
<td>99.944</td>
<td></td>
<td>33.5</td>
<td>99.945</td>
</tr>
<tr>
<td>0.004</td>
<td>4.3</td>
<td>99.907</td>
<td></td>
<td>39.4</td>
<td>99.941</td>
<td></td>
<td>40.8</td>
<td>99.942</td>
</tr>
<tr>
<td>0.005</td>
<td>4.3</td>
<td>99.927</td>
<td></td>
<td>48.7</td>
<td>99.969</td>
<td></td>
<td>49.8</td>
<td>99.969</td>
</tr>
<tr>
<td>0.006</td>
<td>7</td>
<td>99.920</td>
<td></td>
<td>59.4</td>
<td>99.979</td>
<td></td>
<td>61.6</td>
<td>99.980</td>
</tr>
<tr>
<td>0.007</td>
<td>5.1</td>
<td>99.908</td>
<td></td>
<td>65.6</td>
<td>99.977</td>
<td></td>
<td>68.8</td>
<td>99.978</td>
</tr>
<tr>
<td>0.008</td>
<td>5.3</td>
<td>99.921</td>
<td></td>
<td>76.6</td>
<td>99.989</td>
<td></td>
<td>78.8</td>
<td>99.989</td>
</tr>
<tr>
<td>0.009</td>
<td>6.4</td>
<td>99.914</td>
<td></td>
<td>86.2</td>
<td>99.997</td>
<td></td>
<td>88.6</td>
<td>99.997</td>
</tr>
<tr>
<td>0.01</td>
<td>5.4</td>
<td>99.892</td>
<td></td>
<td>92.5</td>
<td>99.989</td>
<td></td>
<td>95.6</td>
<td>99.990</td>
</tr>
</tbody>
</table>

*Max. Distance n: max. distance of utilized neighbors to target entities; when n = 0, only target entities’ profile attributes are utilized.
DeHIN Performs Better with More Link Types

Table 3: Performance of DeHIN on t.qq anonymized dataset (density: 0.01) improves as the amount of utilized target network schema link types increases (in percentage)

<table>
<thead>
<tr>
<th>Types of Links</th>
<th>Max. Distance 1</th>
<th></th>
<th>Max. Distance 2</th>
<th></th>
<th>Max. Distance 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Precision</td>
<td>Reduction Rate</td>
<td>Precision</td>
<td>Reduction Rate</td>
<td>Precision</td>
<td>Reduction Rate</td>
</tr>
<tr>
<td>f</td>
<td>68.1</td>
<td>99.982</td>
<td>77.6</td>
<td>99.983</td>
<td>77.7</td>
<td>99.983</td>
</tr>
<tr>
<td>m</td>
<td>80.9</td>
<td>99.976</td>
<td>87.8</td>
<td>99.976</td>
<td>88</td>
<td>99.976</td>
</tr>
<tr>
<td>c</td>
<td>82.8</td>
<td>99.975</td>
<td>88.7</td>
<td>99.976</td>
<td>88.8</td>
<td>99.976</td>
</tr>
<tr>
<td>r</td>
<td>81.1</td>
<td>99.976</td>
<td>88.7</td>
<td>99.976</td>
<td>88.9</td>
<td>99.976</td>
</tr>
<tr>
<td>f-m</td>
<td>89.3</td>
<td>99.989</td>
<td>94.2</td>
<td>99.990</td>
<td>94.2</td>
<td>99.990</td>
</tr>
<tr>
<td>f-c</td>
<td>90.1</td>
<td>99.989</td>
<td>94.6</td>
<td>99.990</td>
<td>94.6</td>
<td>99.990</td>
</tr>
<tr>
<td>f-r</td>
<td>89.2</td>
<td>99.989</td>
<td>94.9</td>
<td>99.990</td>
<td>95</td>
<td>99.990</td>
</tr>
<tr>
<td>m-c</td>
<td>84.7</td>
<td>99.976</td>
<td>89.6</td>
<td>99.976</td>
<td>89.7</td>
<td>99.976</td>
</tr>
<tr>
<td>m-r</td>
<td>83.2</td>
<td>99.976</td>
<td>89.5</td>
<td>99.977</td>
<td>89.7</td>
<td>99.977</td>
</tr>
<tr>
<td>c-r</td>
<td>85.2</td>
<td>99.976</td>
<td>90.3</td>
<td>99.976</td>
<td>90.5</td>
<td>99.976</td>
</tr>
<tr>
<td>f-m-c</td>
<td>91.6</td>
<td>99.989</td>
<td>94.8</td>
<td>99.990</td>
<td>94.8</td>
<td>99.990</td>
</tr>
<tr>
<td>f-m-r</td>
<td>90.6</td>
<td>99.989</td>
<td>95.1</td>
<td>99.990</td>
<td>95.2</td>
<td>99.990</td>
</tr>
<tr>
<td>f-c-r</td>
<td>91.5</td>
<td>99.989</td>
<td>95.4</td>
<td>99.990</td>
<td>95.5</td>
<td>99.990</td>
</tr>
<tr>
<td>m-c-r</td>
<td>86.5</td>
<td>99.977</td>
<td>91</td>
<td>99.977</td>
<td>91.2</td>
<td>99.977</td>
</tr>
<tr>
<td>f-m-c-r</td>
<td>92.5</td>
<td>99.989</td>
<td>95.6</td>
<td>99.990</td>
<td>95.7</td>
<td>99.990</td>
</tr>
</tbody>
</table>

* f: follow; m: mention; r: retweet; c: comment

*Max. Distance n: max. distance of utilized neighbors to target entities; when \(n = 0 \), only target entities’ profile attributes are utilized

*\(n = 0 \): only target entities’ profiles are utilized—precision and reduction rate are always 5.4% and 99.892%
DeHIN’s Performance Slightly Degrades When Anonymity Gets Stronger

(a) Density: 0.001
(b) Density: 0.002
(c) Density: 0.003
(d) Density: 0.004
(e) Density: 0.005
(f) Density: 0.006
(g) Density: 0.007
(h) Density: 0.008
(i) Density: 0.009
(j) Density: 0.01
DeHIN Performs Better with More Link Types

![Graph showing precision with varying DeHIN’s Max. Distance of Utilized Neighbors n](image)
Privacy Risk Increases With More Link Types
The Research Roadmap

Utilized Heterogeneity Information

Utilized Attribute Information

DeHIN

Utilized Graph Information

- k-closeness
- l-diversity
- k-anonymity
- k-degree
- k-neighbors
- k-symmetry
- k-automorphism
- k-security