Direct Access Networks:
A Paradigm for Robust Dynamic Extensibility

Prof. Steven S. Lumetta
(joint work with Prof. Muriel Medard)

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
Coordinated Science Laboratory
Direct Access Networks:
A Playground for Adaptive Computation

Prof. Steven S. Lumetta
(joint work with Prof. Muriel Medard)

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
Coordinated Science Laboratory
Outline

• direct access networks
• challenges
 – link recovery
 – dynamic extensibility
 – dynamic capacity
• methodology for study
• combine mobility and services
• conclusions
Extending Network Infrastructure

- connectivity demands
 - rapid growth
 - unpredictable
 - incremental
- ad-hoc infrastructure extensions
 - aggregation
 - hierarchical organization
 - periodic overhauls
Aggregation and Overhauls

new end user or network

network/ISP

backbone network

switch (e.g., WDM, SONET, ATM)
Aggregation and Hierarchy
Growth by Direct Access

new end user
or network

network/ISP

backbone network

switch (e.g., WDM, SONET, ATM)
Just Add Switches?

- Each switch adds:
 - Cost (very expensive)
 - Additional latency
 - Power consumption
 - Jitter

Direct access decouples access from routing.
Direct Access Components

- (mobile) end user
- access node
- access ports
- backbone network
Characteristics of Switches and Access Ports

- owned by regulated industry
- provide reliable connectivity
- control available bandwidth

- switches
 - expensive
 - installed to meet routing needs

- access ports
 - inexpensive
 - available for lease/rent
 - variable backup options
Access Node and End User Characteristics

• federated ownership (ISP’s/individuals)
• access nodes
 – scalable multiprocessor
 – provide home/proxy computation
 – negotiate bandwidth
 – support base stations for mobile users
• end users
 – possibly mobile
 – variable bandwidth demands
 – variable computation demands
Advantages of Direct Access

• contrast with alternatives
 – uses existing infrastructure
 – fewer owners/operators along path
 – inexpensive to implement
• new capabilities
 – dynamic extensibility
 – dynamic capacity (bandwidth)
Dynamic Extensibility Example

Champaign-Urbana

Springfield

Decatur

Chicago
Dynamic Extensibility Example

ad-hoc
FEMA network
Dynamic Extensibility Example

nomadic computing
Dynamic Capacity Examples

• conference hotel
 – week 1: philosophers
 – week 2: ACM SIG
 – week 3: W3 Net Surfers’ Club

• NASA
 – supernova catalog
 – shuttle mission video broadcasts
 – first film from surface of Titan
Outline

- direct access networks
- challenges
 - link recovery
 - dynamic extensibility
 - dynamic capacity
- methodology for study
- combine mobility and services
- conclusions
Recovery of Physical Links

• desired properties
 – localized (distributed decisions)
 – dynamic, available rather than reserved
 – support general topology
 – avoid duplicated effort

• approaches
 – self-healing rings
 – loopback restoration
Self-Healing Rings

reserved bandwidth

active backup
Loopback Restoration

dynamic bandwidth

passive backup
Advantages of Loopback Restoration

• more general topology
 – dual-path mesh (vs. ring coverage)
 – arbitrary topology with backup priorities
• dynamic exploration
 – uses available bandwidth
 – no active backup
 – finds any possible backup path
• no recovery reorganization for new switches
Loopback with Direct Access
Loopback Solution
Problems for Recovery Implementation

- fault detection and localization
- real-time backup path exploration
- distributed recovery scheme
 - switches and access ports
 - support for dynamic extensibility/capacity
- involve access nodes in recovery?
Problems for Dynamic Extensibility

• access port setup
 – node-owner/billing identification
 – access negotiations
 – automated?

• access node routing
 – may not have home node
 – faster than wired name propagation?
Problems for Dynamic Capacity

• arbitration of bandwidth
 – involve only one link (switches and access nodes)
 – switches direct access port control
 – pricing scheme?
Outline

• direct access networks
• challenges
 – link recovery
 – dynamic extensibility
 – dynamic capacity
• methodology for study
• combine mobility and services
• conclusions
Methodology for Study

- simulation of wireless connections
 - simpler than real hardware
 - measure effect of improvement
- emulation of TDM direct access network
 - Myrinet-based
 - using active control (an SMP)
Myrinet-Based Emulation

10 MB/sec TDM

Myrinet properties
• 160 MB/sec links
• 8-way crossbar switches
• round-robin scheduling

backbone traffic generator
Opportunities with Direct Access

- seamless mobile access
 - connection handoff (cellular, etc.)
 - name propagation/data forwarding
 - disconnected filesystems (MFAS)
- scalable internet services
 - image distillation (TranSend)
 - prefetching (Smart WWW Proxy)
 - formatting (Wingman)
 - scalable network service architecture (TACC)
Fun Problems

• connectivity
 – suspend and reinitiate
 – buffer data streams
 – control data management strategy
• manage computation
 – home node or proxy
 – trade computation for bandwidth
 – allocate computation resources
 – store results where
• advertise mobile services
• broadcast commonly requested data
Conclusions

• direct access networks
 – decouples access from routing
 – reduces depth of hierarchy

• enables
 – dynamic extensibility
 – dynamic capacity

• problems
 – recovery
 – managing adaptation