The Impact of Phase Structure on Performance

Prof. Steven S. Lumetta

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
Coordinated Science Laboratory

© Copyright 1999 Steven S. Lumetta. All rights reserved.
Architectures of the Future

• hierarchical organization
 – SMP base units
 – flexible interconnection

• cluster software
 – multiple peer operating systems
 – dynamic resource partitions

• hierarchical structure not well-defined
 – purchased/upgraded incrementally
 – execute on partitions of full machine
Parallel Applications?

• important commercial applications
 – databases
 – internet services
 – collaborative and virtual environments
• environment suitable for parallelism
 – coarse-grained straightforward
 – communicate with single abstraction for fine-grained
 • uniform message-passing interface (my thesis)
 • distributed shared memory
• how does programming model interact with performance?
Outline

• motivation and question
• performance results
• phase-structured programming
• drawbacks of global structure
 – statistical fluctuations
 – load balance tuning
 – correlated communication
• conclusions
Hardware: A Sun Enterprise Clump

- four Sun Enterprise 5000 servers
- eight 167 MHz UltraSPARC’s (four used in following performance data)
- 2 GB of memory
- four Myrinet SBUS network links
Application Run Profile

phase-structured Split-C applications

• SAMPLE: sample sort
 – all-to-all, fine-grained

• CON/comp: connected components,
 computation-bound input
 – localized, fine-grained

• CON/comm: communication-bound input
 – some all-to-one

• 3D-FFT: Fast Fourier Transform in 3D
 – all-to-all, bulk
Application Performance on 16 Processors

<table>
<thead>
<tr>
<th>Execution time in seconds</th>
<th>Enterprise 5000 Clump (4x4)</th>
<th>16-way UltraSPARC 170 NOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE</td>
<td>1.76 sec</td>
<td>2.01 sec</td>
</tr>
<tr>
<td>CON/comp</td>
<td>1.128 sec</td>
<td>1.110 sec</td>
</tr>
<tr>
<td>CON/comm</td>
<td>4.18 sec</td>
<td>4.76 sec</td>
</tr>
<tr>
<td>3-D FFT</td>
<td>0.504 sec</td>
<td>0.518 sec</td>
</tr>
</tbody>
</table>

- one network interface per processor
- roughly equivalent results
- faster for all-to-one communication (e.g., CON/comm)
 - 1/4 travels through shared memory
Phase-Structured Programming

• common approach for parallel applications
 – split into phases
 – global synchronization between each phase
 – generalize to several processor subgroups
• benefits of phase structure
 – global structure similar to sequential program
 – parallel analysis/debugging one phase at a time
• the price of the abstraction
 – wait for slowest processor to finish
 – requires good load balance
Drawbacks of Global Structure

- statistical fluctuations
 - more important on large machines
 - limits expected efficiency
- load balance tuned to multi-level hierarchy
 - uneven processor communication rates
 - change in hierarchy breaks balance
- correlated communication
 - want economy of scale
 - aggregate demands as variable as individual
Statistical Fluctuations

• consider
 – P-processor system
 – processor workloads are random variables
• execution time is maximum of P variables
• adjust mean by amount linear in standard deviation (value from graph to right)
Expected Parallel Efficiency

per-task variability is 0.25

- 256 tasks/processor
- 16 tasks/processor
- 1 task/processor

© Copyright 1999 Steven S. Lumetta. All rights reserved.

06-99, slide 11
Uneven Communication Demands

- EM3D electromagnetic wave propagation
- Physical 3D mesh partitioned between processors
- "Corner" elements do not use network
- "Middle" elements use network for 40% of communication
Tuned Load Balance

- tuning load balance
 - address hierarchy by repartioning workload
 - balance breaks when hierarchy changes
- measured ratio between fastest and slowest processors in EM3D time step
 - 1.74 on 32-node network of workstations
 - 7.84 on 32-processor Clump (4x8-processors)
 - load balance is very poor on Clump!
- a related problem: subpartitions of hierarchy
Correlated Communication

• want economy of scale
 – processors aggregated in hierarchy (e.g., SMP’s)
 – want to provide fewer resources per-processor
 – but are aggregate demands smoother?
 – only if independent

• application breaks into phases
 – computation phase
 – communication phase

• communication demands correlated!
Shared Resource Model

- consider aggregation of P processors with shared communication resources
- compare with unaggregated system
- model: processors alternate between two queues
 - private idle queue
 - shared communication queue
Shared Resource Model

- communication queue
 - single server
 - server-sharing discipline

- processor characterization
 - utilization u (from 0 to 1)
 - duty cycle when $P=1$
Communication Queue Scaling

idle queues

many small resources

one large resource
Application Slowdown Metric

- three regimes
 - correlated: worst case
 - independent: speedup at low utilization
 - scheduled: maximum benefit
Alternatives to Global Structure

• dynamic load-balancing
 – use function-level parallelism?
 – meshes well with object-based approach
 – reduces impact of drawbacks

• tradeoff
 – overhead for dynamic execution
 – non-determinism makes debugging harder
Conclusions

- future hardware is hierarchical
 - can engineer high-performance communication layer
 - can use prediction, *etc.* to hide latency
- performance limited by programming model
 - statistical effects
 - load balance more uneven on Clump
 - phase structure correlates communication
- dynamic approaches: help or hindrance?