A 2-out-of-5 Code Can Detect Any Single Bit Flip

A 2-out-of-5 code maps decimal digits into 5-bit code words. Each code word has exactly two 1 bits. How many 1 bits are there if we flip a bit?

Result: Either ONE 1 bit or THREE 1 bits.

Can We Generalize This Approach to Error Detection?

Generalize by Using Even and Odd Numbers of 1 Bits

What if we choose all code words with an ODD number of 1 bits? A bit flips from 1 to 0.

Result: Any bit flip gives a non-code-word!
Add a Parity Bit to Any Representation!

starting with any representation
◦ Add one extra **parity bit** to each code word.
◦ Choose parity bit’s value to make total number of 1 bits ODD (called odd parity).

For example, 3-bit unsigned with odd parity...

<table>
<thead>
<tr>
<th>Code Words</th>
<th>Parity Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0001</td>
</tr>
<tr>
<td>1</td>
<td>0010</td>
</tr>
<tr>
<td>2</td>
<td>0100</td>
</tr>
<tr>
<td>3</td>
<td>0111</td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>1011</td>
</tr>
<tr>
<td>6</td>
<td>1101</td>
</tr>
<tr>
<td>7</td>
<td>1110</td>
</tr>
</tbody>
</table>

Hamming Distance: The Number of Bits that Differ

Let’s define a way to measure distance
◦ between two bit patterns
◦ as the number of bits that must change/flip

<table>
<thead>
<tr>
<th>Distance 1</th>
<th>Distance 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101</td>
<td>0101</td>
</tr>
<tr>
<td>0100</td>
<td>0010</td>
</tr>
</tbody>
</table>

We call this measure **Hamming distance**
(after Richard Hamming, a UIUC alumnus).

Define the Hamming Distance for a Representation

Let’s also define the Hamming distance
for a representation (let’s call a representation a **code** now):
◦ Given the set of code words (bit patterns) that have meaning,
◦ the Hamming distance of the code
 ◦ is the **minimum Hamming distance**
 ◦ between any two distinct code words.

Example: The Hamming Distance of BCD is 1

What is the Hamming distance (H.D.) of BCD?
◦ Choose two code words,
◦ say those representing digits 0 and 1.

<table>
<thead>
<tr>
<th>Distance 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

H.D. of BCD is min. over all code word pairs.
Thus BCD has Hamming distance 1.
Example: The Hamming Distance of 2-out-of-5 is 2

What is the H.D. of a 2-out-of-5 code?
- Choose two distinct code words, A and B.
- Each has two 1s (cannot be the same two).
- So A must have at least one 1 in a position where B has a 0.
- And B must have at least one 1 in a position where A has a 0.
H.D. from A to B is thus at least 2.
Thus a 2-out-of-5 code has H.D. 2.

Example: H.D. with Odd Parity

What is the H.D. of a code with odd parity?
- Choose two distinct code words, A and B.

A must differ from B in some location.
- Assume that the location is unique.
- A has odd parity, so B has even parity (contradiction, so location cannot be unique).

Example: H.D. with Odd Parity is at Least 2

There must be at least two locations in which A to B differ.

A ???0??0??

B ???1??1??

Thus H.D. with odd parity is at least 2.

H.D. of 2’s Complement with Odd Parity is 2

Add an odd parity bit to 3-bit 2’s complement:
-4 ↔ 1000
-3 ↔ 1011
-2 ↔ 1101
-1 ↔ 1110
0 ↔ 0001
1 ↔ 0010

Thus H.D. for this code is exactly 2.
With H.D. 2, Two-Bit Errors Can be Undetectable

What happens if two bit errors occur when using 3-bit 2’s complement with parity?

In this case, no error can be detected!

<table>
<thead>
<tr>
<th>0</th>
<th>001</th>
<th>001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>first bit flip</td>
</tr>
<tr>
<td></td>
<td>001</td>
<td>second bit flip</td>
</tr>
<tr>
<td></td>
<td>000</td>
<td>In this case, no error can be detected!</td>
</tr>
<tr>
<td>0</td>
<td>010</td>
<td>1</td>
</tr>
</tbody>
</table>

A Code with H.D. of \(d \) Allows Detection of \((d-1)\) Errors

More generally...

- Start with a code with H.D. given by \(d \)
- Ask: How many errors can be detected?

H.D. of \(d \) implies

- Any code word is at least \(d \) flips from any other.
- Thus \((d-1)\) bit errors cannot transform any code word into any other.
- Thus up to \((d-1)\) bit errors can be detected.
- There exist code words \(A \) and \(B \) separated by \(d \) flips, so \(d \) bit errors can transform \(A \) into \(B \).