Task: Checking for an Upper-Case Letter

Let's design logic to check whether an ASCII character is an upper-case letter.

In ASCII, 'A' is \(1000001\) (0x41), and 'Z' is \(1011010\) (0x5A).
Let's say that the ASCII character is in \(C = C_6C_5C_4C_3C_2C_1C_0\).

How can we check whether \(C\) represents an upper-case letter?

We Will Need a BIG Truth Table!

<table>
<thead>
<tr>
<th>Should we write a truth table for (U(C))?</th>
<th>(C_6)</th>
<th>(C_5)</th>
<th>(C_4)</th>
<th>(C_3)</th>
<th>(C_2)</th>
<th>(C_1)</th>
<th>(C_0)</th>
<th>(U(C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Let's Break the Truth Table into Eight Pieces

Can we break the truth table into pieces?

For example, let's break the truth table
° into eight truth tables
° of 16 rows each.
Each piece represents one value of \(C_6C_5C_4\).
We can solve each piece with a K-map on \(C_3C_2C_1C_0\).
Some Functions are Quite Simple

Or maybe we don’t need a K-map for some. Remember that ‘A’ is 1000001 (0x41), and ‘Z’ is 1011010 (0x5A). Think about the table for C₉C₈C₇ = 000?* What is the function of C₇C₆C₅C₄ = 000? (In other words, no ASCII character with C₆C₅C₄ = 000 is an upper-case letter.)

* This notation means C₄ = 0 AND C₃ = 0 AND C₂ = 0.

Only Two of Our Functions are Not the 0 Function

For reference: ‘A’ is 1000001 (0x41), and ‘Z’ is 1011010 (0x5A). Which of our eight functions are not the 0 function? C₆C₅C₄ = 100 Let’s call the function T₄. C₆C₅C₄ = 101 Let’s call the function T₅. Let’s solve K-maps for these two.

Solve T₄ Using a Single Loop

Let’s solve T₄. Should we use SOP or POS? T₄ is a maxterm! T₄ = (C₃ + C₂ + C₁ + C₀)

Solve T₅ as a POS Expression

Let’s solve T₅. POS is better again. What are the loops for SOP? (C₃ + C₂) (C₃ + C₁ + C₀)

For POS?

So T₅ = (C₃ + C₂)· (C₃ + C₁ + C₀)
Combine T_4 and T_5 to find $U(C)$

How do we combine T_4 and T_5 to find the full upper-case checker function $U(C)$?
Remember:
- T_4 applies when $C_6C_5C_4 = 100$, and
- T_5 applies when $C_6C_5C_4 = 101$.
So …?
- AND T_4 with $C_6C_5'C_4'$,
- AND T_5 with $C_6C_5'C_4$, and
- OR the results together.

A Good Solution, But Maybe We Can Do Less Work?

So $U(C) = C_6C_5'C_4' (C_3 + C_2 + C_1 + C_0) + C_6C_5'C_4 (C_3' + C_2')(C_3' + C_1' + C_0')$
That’s a pretty small and fast solution.
But we still had to do a fair bit of work.

Is there an easier way?
Consider the following: to check for an upper-case letter, we need to know whether
$C \geq 1000001$ AND $C \leq 1011010$

Use Two Comparators to Calculate $U(C)$

What about this approach?

Or Use Two Adders to Calculate $U(C)$

Or this approach?

Note that the adders are performing subtractions.
Inefficient, But Simple to Design

Quite large and slow compared with our first solution?

Consider two arguments:
1. CAD tools can optimize away much of the extra overhead.
2. Software executing on data center servers around the world executes the adder design even less efficiently, but it’s constantly in use on hundreds of thousands of machines.