To Simplify, Write Function as a Sum of Prime Implicants

One way to simplify a function F:

Choose a set of prime implicants that, when ORed together, give F.

But our approach for picking prime implicants is not so easy.

List All Implicants for One Variable A

Let’s try a different approach.

Start with functions of one variable, A.

How many implicants are possible?

Remember:

- There are only four functions on A!
- We only consider products of literals.

$$A \quad A' \quad 1$$

$(1$ is the product of zero literals.)

The Domain of a Boolean Function is a Hypercube

We can

- **represent the domain**
- of a Boolean function F on N variables
- **as an N-dimensional hypercube**.

Each vertex in the hypercube corresponds to one combination of the N inputs.

The function F thus **has one value for each vertex** (each input combination).
Implicants for N=1 Correspond to Vertices and Edge

With $N = 1$ (one variable, A), a hypercube is just a line segment with two vertices.
The three possible implicants correspond to the two vertices and the one edge of the hypercube.
If we write the values of F by the vertices, we can see which implicants are covered with 1s.

We Draw Function $F(A)$ Using a 1-Variable K-Map

Instead of drawing a line segment, we can draw two boxes, as shown below.
We call this approach a Karnaugh map (K-map) on 1 variable.
The left box corresponds to $A = 0$, and the right corresponds to $A = 1$.
Each box represents
- an input combination of A,
- a vertex of the hypercube, and
- an implicant (a minterm).

We Draw Function F Using a 1-Variable K-Map

We can mark implicants of F by circling boxes that contain 1s.
Here, we show a loop around the box corresponding to the implicant A.
To check whether an implicant is prime, we consider growing the loop to contain more boxes.
A circle that cannot grow is a prime implicant of F.

We Draw Function F Using a 1-Variable K-Map

For the function F shown, we can grow the loop to contain both boxes.
The loop is now as big as possible (the full K-map!), so it cannot grow further.
The result (the implicant 1) is a prime implicant of F.
So $F(A) = 1$.
Feel excited?
List All Implicants for Two Variables, A and B

Now consider two input variables, A and B.

How many implicants are possible?

Start with minterms...

\[
\begin{align*}
AB & \quad AB' & \quad A'B & \quad A'B' \\
A & \quad A' & \quad B & \quad B'
\end{align*}
\]

And, of course ...

1

Minterms Correspond to Vertices

With \(N = 2 \) (inputs A and B), a hypercube is a square: four vertices, four edges, and a face.

Edges include both values of one variable.

The Implicant 1 Corresponds to the Face/Square

The face includes both values of both variables.
We can draw a K-map on 2 variables for the function $G(A,B)$ as shown below.

Again, each box represents
- an input combination
- a vertex of the hypercube, and
- an implicant (a minterm).

Process for Finding $G(A,B)$ Using a K-Map

Now the problem is more interesting.

We want to find the largest loops
- with power-of-2 edge lengths (1 or 2)
- that together cover all 1s in G.

Why?
- A loop that can’t grow is a prime implicant of G.
- If we cover all 1s, the sum of the implicants gives the function G.

To Find G, Start by Picking a 1 and Circling It

Start by picking a 1 and circling it.
The minterm $A'B'$ is an implicant of G.
But it's not a prime implicant of G.
We cannot grow the loop downward (cannot cover a 0—that would not be an implicant).
We can grow the loop to the right...

Grow the Loop Until We Get a Prime Implicant

Let’s grow the loop.
The loop now represents B', which is a prime implicant of G.
But we didn’t cover one of the 1s in G yet.
We need a second loop.
Start a Second Loop by Circling an Uncovered 1

The new loop represents the minterm \(AB\), which is an implicant of \(G\).

But it’s not a prime implicant of \(G\).

We cannot grow the new loop to the left.

We can grow the new loop upward...

Again, Grow the Loop Until We Get a Prime Implicant

Let’s grow the loop.

The loop now represents \(A\), which is a prime implicant of \(G\).

Together, these two loops cover all 1s in \(G(A,B)\).

So we can write

\[G(A,B) = B' + A \]

Now are you excited?

List All Implicants for Variables A, B, and C

Guess what’s next.

Three input variables: \(A\), \(B\), and \(C\)!

How many implicants are possible?

That’s right: lots.

A 3D hypercube is a cube.

Let’s count features instead.

A 3D Hypercube Has Vertices, Edges, Faces, and Cube

Now, let’s count.

of vertices? 8

of edges? 12

of faces? 6

of cubes? 1

So the total is 27.
Notice a Pattern? 3^N Implicants on N Variables

$N = 1$ gives 3 implicants.
$N = 2$ gives 9 implicants.
$N = 3$ gives 27 implicants.
Maybe N gives 3^N implicants?

Why?

For each input variable, we have three choices:
- include the literal
- include the complemented literal, or
- leave the variable out.

How Can We Draw Boxes for the Cube?

Focus on the top half.
Each adjacent A, C pair shares an edge.
The last edge wraps around (from 10 to 00).
The top face is all four.

Loops Can be 1, 2, or 4 Boxes Wide

So we use Gray code order on the boxes (one bit changes at a time).
Loops can be
- 1 box wide (a vertex)
- 2 boxes wide (an edge)
- 4 boxes wide (the face)

Loops cannot be 3 boxes wide, because 3 boxes do not correspond to an implicant (implicants are hypercube features).

We Draw Function $H(A,B,C)$ Using a 3-Variable K-Map

Here is a 3-variable K-map.
Let’s find a way to express $H(A,B,C)$.
Start by circling a 1.
Some Minterms May Be Prime Implicants

The loop represents minterm $A' B' C$. Is $A' B' C$ a prime implicant of H?
Yes, since we cannot grow the loop left, right, nor downward.

Don’t Forget to Check for Wrapping

Choose another 1 to cover and circle it. The new loop is the minterm $A' B C'$. Is $A' B C'$ prime for $H(A,B,C)$?
No, we can grow the loop to the left (wrap around).

We Have Found a Second Prime Implicant

Grow the loop. The new loop is $B C'$. Is $B C'$ prime for $H(A,B,C)$?
Yes. A loop cannot have three 1s, and we cannot include the 0 in the row.

Keep Choosing Prime Implicants Until All 1s are Covered

We still have another 1 to cover. Circle it. The new loop represents minterm $A B C$. Is $A B C$ a prime implicant of H?
No, we can grow the loop to the right.
And We’re Done: \(H(A,B,C) = A'B'C + BC' + AB \)

Grow the loop.

The new loop is \(AB \).

Is \(AB \) prime for \(H(A,B,C) \)?

Yes.

So \(H(A,B,C) = A'B'C + BC' + AB \)

K-Maps Extend Nicely to Four Variables

Now you’re excited?

Ok, on to 4 variables!

It’s hard to draw the hypercube.

But the K-map is not so bad.

Remember:

- \textbf{Gray code order} in both directions.
- \textbf{1, 2, or 4-box loops} (no 3-box loops!).

Goal: Minimal Number of Loops, Maximal Size per Loop

Your \textbf{goal} is to come up with

- a \textbf{minimal number of loops}
- of \textbf{maximal size} (all prime, of course).
- that together \textbf{cover all 1s} in the function.

If you do so, the \textbf{result will be optimal among SOP expressions*} by our area \textbf{heuristic} (for 4 or fewer variables).

*\textbf{A POS expression might be better, as might an expression using XORs.}

Considerations for Optimizing with K-Maps

Sometimes you end up with loops that aren’t needed. If all of a loop’s 1s are covered by other loops, you can remove the loop.

To make the process faster,

- try to \textbf{start by covering 1s for which you need make no choices}
- (1s for which all directions with adjacent 1s can be included in one big loop).

But you may have to make choices, and \textbf{there can be more than one optimal SOP form}.
Here’s how a 4-variable K-map looks.

We won’t solve this one now.

Want to try it in the online tool?