```c
#include <stdio.h> /* Include C’s standard I/O header file. */

int main ()
{
    /* variable declarations */
    int A = 1;
    int B = 1;
    int C;
    int D;

    /* Print 20 Fibonacci numbers. */
    for (D = 0; 20 > D; D = D + 1) {
        if (D == 0) {
            printf ("%d
", A);
            C = A + B;
            A = B;
            B = C;
        } else {
            printf ("%d
", A);
        }
    }

    /* Program finished successfully. */
    return 0;
}
```

```c
#include <stdio.h> /* Include C’s standard I/O header file. */

int main ()
{
    /* variable declarations */
    int number; /* number given by user */
    int factorial; /* factorial of user’s number */

    /* Print a welcome message, followed by a blank line. */
    printf ("--- Welcome to the factorial calculator! ---\n\n");

    /* Ask for and read the player’s number into a variable. */
    printf ("What factorial shall I calculate for you today? ");
    if (1 != scanf ("%d %c %d", &A, &B, &C)) {
        printf ("Please try again.\n"); /* Program failed. */
        return 3;
    }

    if ('+' == B) {
        D = A + C;
    } else if ('-' == B) {
        D = A - C;
    } else if ('/' == B) {
        D = A / C;
    } else if ('*' == B) {
        D = A * C;
    } else {
        printf ("Invalid choice \"%c\n\", B);
        /* Program failed. */
        return 2;
    }

    printf ("The factorial is %d.\n", D);

    /* Program finished successfully. */
    return 0;
}
```
/* solution of the quadratic equation ax^2+bx+c=0
 Adapted from V. Kindratenko’s notes on 30 August 2016. */
#include <stdio.h> /* needed for printf and scanf */
#include <math.h> /* needed for sqrtf */
int main()
{
 float a, b, c; /* quadratic equation coefficients */
 float D; /* discriminant */
 float x1, x2; /* solution(s) */

 /* Get equation coefficients. */
 printf ("Enter a, b, and c: ");
 if (3 != scanf ("%f %f %f", &a, &b, &c)) {
 printf ("Three real coefficients are required.\n");
 return 3; /* Program failed. */
 }

 /* Compute discriminant. */
 printf ("Solving equation %fx^2+%fx+%f=0.\n", a, b, c);
 D = b * b - 4 * a * c;

 /* Compute solution. */
 if (0 < D) {
 /* Two real roots exist. */
 x1 = (-b + sqrtf (D)) / (2 * a);
 x2 = (-b - sqrtf (D)) / (2 * a);
 printf ("x1=%f, x2=%f\n", x1, x2);
 }
 else if (0 == D) {
 /* Only one root exists. */
 x1 = -b / (2 * a);
 printf ("x=%f\n", x1);
 }
 else {
 printf ("No real roots exist\n");
 }

 /* End program successfully. */
 return 0;
}

/* Compute integral of f(x) = x*x+2x+3 on [a,b].
 Adapted from V. Kindratenko’s notes on 30 August 2016. */
#include <stdio.h>
int main()
{
 int n = 100; /* hardcoded number of Riemann sum terms */
 float a = -1.0f; /* hardcoded [a,b] */
 float b = 1.0f;
 float s = 0.0f; /* computed integral value */
 int i;
 float x1; /* x and y=f(x) */
 float y;
 float dx = (b - a) / n; /* width of rectangles */
 /* Compute integral of f(x) = x*x+2x+3 on [a,b].
 Adapted from V. Kindratenko’s notes on 30 August 2016. */
 printf ("%f\n", s);
 return 0;
}

int main()
{
 int n = 100; /* hardcoded number of Riemann sum terms */
 float a = -1.0f; /* hardcoded [a,b] */
 float b = 1.0f;
 float s = 0.0f; /* computed integral value */
 int i;
 float x1; /* x and y=f(x) */
 float y;
 float dx = (b - a) / n; /* width of rectangles */
 /* Compute integral of f(x) = x*x+2x+3 on [a,b].
 Adapted from V. Kindratenko’s notes on 30 August 2016. */
 printf ("%f\n", s);
 return 0;
}