But, on the other hand, Uncle Abner said that the person that had took a bull by the tail once had learnt sixty or seventy times as much as a person that hadn’t, and said a person that started in to carry a cat home by the tail was getting knowledge that was always going to be useful to him, and warn’t ever going to grow dim or doubtful.

— Mark Twain, *Tom Sawyer Abroad* (1894)

11 Tail Inequalities

The simple recursive structure of skip lists made it relatively easy to derive an upper bound on the expected *worst-case* search time, by way of a stronger high-probability upper bound on the worst-case search time. We can prove similar results for treaps, but because of the more complex recursive structure, we need slightly more sophisticated probabilistic tools. These tools are usually called *tail inequalities*; intuitively, they bound the probability that a random variable with a bell-shaped distribution takes a value in the *tails* of the distribution, far away from the mean.

11.1 Markov’s Inequality

Perhaps the simplest tail inequality was named after the Russian mathematician Andrey Markov; however, in strict accordance with Stigler’s Law of Eponymy, it first appeared in the works of Markov’s probability teacher, Pafnuty Chebyshev.¹

Markov’s Inequality. *Let* X *be a non-negative integer random variable. For any* $t > 0$, *we have* $\Pr[X \geq t] \leq E[X]/t$.

Proof: The inequality follows from the definition of expectation by simple algebraic manipulation.

\[
E[X] = \sum_{k=0}^{\infty} k \cdot \Pr[X = k] \quad \text{[definition of } E[X] \text{]} \\
= \sum_{k=0}^{\infty} \Pr[X \geq k] \quad \text{[algebra]} \\
\geq \sum_{k=0}^{t-1} \Pr[X \geq k] \quad \text{[since } t < \infty \text{]} \\
\geq \sum_{k=0}^{t-1} \Pr[X \geq t] \quad \text{[since } k < t \text{]} \\
= t \cdot \Pr[X \geq t] \quad \text{[algebra]} \quad \square
\]

Unfortunately, the bounds that Markov’s inequality implies (at least directly) are often very weak, even useless. (For example, Markov’s inequality implies that with high probability, every node in an n-node treap has depth $O(n^2 \log n)$. Well, *duh!* To get stronger bounds, we need to exploit some additional structure in our random variables.

¹The closely related tail bound traditionally called Chebyshev's inequality was actually discovered by the French statistician Irénée-Jules Bienaymé, a friend and colleague of Chebyshev’s.
11.2 Independence

A set of random variables X_1, X_2, \ldots, X_n are said to be mutually independent if and only if

$$\Pr \left[\bigcap_{i=1}^{n} (X_i = x_i) \right] = \prod_{i=1}^{n} \Pr[X_i = x_i]$$

for all possible values x_1, x_2, \ldots, x_n. For examples, different flips of the same fair coin are mutually independent, but the number of heads and the number of tails in a sequence of n coin flips are not independent (since they must add to n). Mutual independence of the X_i's implies that the expectation of the product of the X_i's is equal to the product of the expectations:

$$\mathbb{E} \left[\prod_{i=1}^{n} X_i \right] = \prod_{i=1}^{n} \mathbb{E}[X_i].$$

Moreover, if X_1, X_2, \ldots, X_n are independent, then for any function f, the random variables $f(X_1), f(X_2), \ldots, f(X_n)$ are also mutually independent.

— Discuss limited independence? —

— Add Chebychev and other moment inequalities? —

11.3 Chernoff Bounds

— Replace with Mihai’s exponential-moment derivation! —

Suppose $X = \sum_{i=1}^{n} X_i$ is the sum of n mutually independent random indicator variables X_i. For each i, let $p_i = \Pr[X_i = 1]$, and let $\mu = \mathbb{E}[X] = \sum_i \mathbb{E}[X_i] = \sum_i p_i$.

Chernoff Bound (Upper Tail).

$$\Pr[X > (1 + \delta)\mu] < \left(\frac{e^{\delta}}{(1 + \delta)^{1+\delta}} \right)^{\mu} \text{ for any } \delta > 0.$$

Proof: The proof is fairly long, but it relies on just a few basic components: a clever substitution, Markov’s inequality, the independence of the X_i’s, The World’s Most Useful Inequality $e^x > 1 + x$, a tiny bit of calculus, and lots of high-school algebra.

We start by introducing a variable t, whose role will become clear shortly.

$$\Pr[X > (1 + \delta)\mu] = \Pr[e^{tX} > e^{(1+\delta)t\mu}]$$

To cut down on the superscripts, I’ll usually write $\exp(x)$ instead of e^x in the rest of the proof. Now apply Markov’s inequality to the right side of this equation:

$$\Pr[X > (1 + \delta)\mu] \leq \frac{\mathbb{E}[\exp(tX)]}{\exp(t(1 + \delta)t\mu)}.$$

We can simplify the expectation on the right using the fact that the terms X_i are independent.

$$\mathbb{E}[\exp(tX)] = \mathbb{E} \left[\exp \left(t \sum_i X_i \right) \right] = \mathbb{E} \left[\prod_i \exp(tX_i) \right] = \prod_i \mathbb{E}[\exp(tX_i)]$$

2
We can bound the individual expectations $E[\exp(tX_i)]$ using The World’s Most Useful Inequality:

$$E[\exp(tX_i)] = p_i e^t + (1 - p_i) = 1 + (e^t - 1)p_i < \exp((e^t - 1)p_i)$$

This inequality gives us a simple upper bound for $E[\exp(tX)]$:

$$E[\exp(tX)] = \prod_i \exp((e^t - 1)p_i) < \exp\left(\sum_i (e^t - 1)p_i\right) = \exp((e^t - 1)\mu)$$

Substituting this back into our original fraction from Markov’s inequality, we obtain

$$Pr[X > (1 + \delta)\mu] < \frac{E[\exp(tX)]}{\exp(t(1 + \delta)\mu)} < \frac{\exp((e^t - 1)\mu)}{\exp(t(1 + \delta)\mu)} = \left(\frac{\exp(e^t - 1 - t(1 + \delta))}{\exp(e^t - 1)}\right)^\mu$$

Notice that this last inequality holds for all possible values of t. To obtain the final tail bound, we will choose t to make this bound as small as possible. To minimize $e^t - 1 - t\delta$, we take its derivative with respect to t and set it to zero:

$$\frac{d}{dt} (e^t - 1 - t(1 + \delta)) = e^t - 1 - \delta = 0.$$ (And you thought calculus would never be useful!) This equation has just one solution $t = \ln(1+\delta)$.

Plugging this back into our bound gives us

$$Pr[X > (1 + \delta)\mu] < \left(\exp(\delta - (1 + \delta)\ln(1 + \delta))\right)^\mu = \left(\frac{e^\delta}{(1 + \delta)^{1+\delta}}\right)^\mu$$

And we’re done! \(\square\)

This form of the Chernoff bound can be a bit clumsy to use. A more complicated argument gives us the bound

$$Pr[X > (1 + \delta)\mu] < e^{-\mu\delta^2/3}$$ for any $0 < \delta < 1$.

A similar argument gives us an inequality bounding the probability that X is significantly smaller than its expected value:

Chernoff Bound (Lower Tail).

$$Pr[X < (1 - \delta)\mu] < \left(\frac{e^{-\delta}}{(1 - \delta)^{1-\delta}}\right)^\mu < e^{-\mu\delta^2/2}$$ for any $\delta > 0$.

11.4 Back to Treaps

In our analysis of randomized treaps, we wrote $i \uparrow k$ to indicate that the node with the ith smallest key (‘node i’) was a proper ancestor of the node with the kth smallest key (‘node k’). We argued that

$$Pr[i \uparrow k] = \frac{[i \neq k]}{|k - i| + 1},$$

and from this we concluded that the expected depth of node k is

$$E[\text{depth}(k)] = \sum_{i=1}^n Pr[i \uparrow k] = H_k + H_{n-k} - 2 < 2 \ln n.$$

To prove a worst-case expected bound on the depth of the tree, we need to argue that the maximum depth of any node is small. Chernoff bounds make this argument easy, once we establish that the relevant indicator variables are mutually independent.
Lemma 1. For any index \(k \), the \(k-1 \) random variables \([i \uparrow k]\) with \(i < k \) are mutually independent. Similarly, for any index \(k \), the \(n-k \) random variables \([i \uparrow k]\) with \(i > k \) are mutually independent.

Proof: We explicitly consider only the first half of the lemma when \(k = 1 \), although the argument generalizes easily to other values of \(k \). To simplify notation, let \(X_i \) denote the indicator variable \([i \uparrow 1]\). Fix \(n-1 \) arbitrary indicator values \(x_2, x_3, \ldots, x_n \). We prove the lemma by induction on \(n \), with the vacuous base case \(n = 1 \). The definition of conditional probability gives us

\[
\Pr \left[\bigwedge_{i=2}^{n} (X_i = x_i) \right] = \Pr \left[\bigwedge_{i=2}^{n-1} (X_i = x_i) \land X_n = x_n \right]
= \Pr \left[\bigwedge_{i=2}^{n-1} (X_i = x_i) \bigg| X_n = x_n \right] \cdot \Pr \left[X_n = x_n \right]
\]

Now recall that \(X_n = 1 \) (which means \(1 \uparrow n \)) if and only if node \(n \) has the smallest priority of all nodes. The other \(n-2 \) indicator variables \(X_i \) depend only on the order of the priorities of nodes 1 through \(n-1 \). There are exactly \((n-1)!\) permutations of the \(n \) priorities in which the \(n \)th priority is smallest, and each of these permutations is equally likely. Thus,

\[
\Pr \left[\bigwedge_{i=2}^{n-1} (X_i = x_i) \bigg| X_n = x_n \right] = \frac{1}{(n-1)!}
\]

The inductive hypothesis implies that the variables \(X_2, \ldots, X_{n-1} \) are mutually independent, so

\[
\Pr \left[\bigwedge_{i=2}^{n-1} (X_i = x_i) \right] = \prod_{i=2}^{n-1} \Pr \left[X_i = x_i \right].
\]

We conclude that

\[
\Pr \left[\bigwedge_{i=2}^{n} (X_i = x_i) \right] = \Pr \left[X_n = x_n \right] \cdot \prod_{i=2}^{n-1} \Pr \left[X_i = x_i \right] = \prod_{i=1}^{n} \Pr \left[X_i = x_i \right],
\]

or in other words, that the indicator variables are mutually independent. \(\square \)

Theorem 2. The depth of a randomized treap with \(n \) nodes is \(O(\log n) \) with high probability.

Proof: First let’s bound the probability that the depth of node \(k \) is at most \(8 \ln n \). There’s nothing special about the constant 8 here; I’m being generous to make the analysis easier.

The depth is a sum of \(n \) indicator variables \(A_k^i \), as \(i \) ranges from 1 to \(n \). Our Observation allows us to partition these variables into two mutually independent subsets. Let \(d_<(k) = \sum_{i < k} [i \uparrow k] \) and \(d_>(k) = \sum_{i > k} [i \uparrow k] \), so that \(\text{depth}(k) = d_<(k) + d_>(k) \). If \(\text{depth}(k) > 8 \ln n \), then either \(d_<(k) > 4 \ln n \) or \(d_>(k) > 4 \ln n \).

Chernoff’s inequality, with \(\mu = \mathbb{E}[d_<(k)] = H_k - 1 < \ln n \) and \(\delta = 3 \), bounds the probability that \(d_<(k) > 4 \ln n \) as follows.

\[
\Pr[d_<(k) > 4 \ln n] < \Pr[d_<(k) > 4\mu] < \left(\frac{e^3}{4^\delta} \right)^{\ln n} = n^{\ln(e^3/4^\delta)} = n^{3-4\ln 4} < \frac{1}{n^2}.
\]

(The last step uses the fact that \(4 \ln 4 \approx 5.54518 > 5 \).) The same analysis implies that \(\Pr[d_>(k) > 4 \ln n] < 1/n^2 \). These inequalities imply the crude bound \(\Pr[\text{depth}(k) > 4 \ln n] < 2/n^2 \).
Now consider the probability that the treap has depth greater than $10 \ln n$. Even though the distributions of different nodes’ depths are not independent, we can conservatively bound the probability of failure as follows:

$$
\Pr \left[\max_k \text{depth}(k) > 8 \ln n \right] = \Pr \left[\bigwedge_{k=1}^{n} \left(\text{depth}(k) > 8 \ln n \right) \right] \leq \sum_{k=1}^{n} \Pr[\text{depth}(k) > 8 \ln n] < \frac{2}{n}.
$$

This argument implies more generally that for any constant c, the depth of the treap is greater than $c \ln n$ with probability at most $2/n^{c \ln c - c}$. We can make the failure probability an arbitrarily small polynomial by choosing c appropriately.

This lemma implies that any search, insertion, deletion, or merge operation on an n-node treap requires $O(\log n)$ time with high probability. In particular, the expected worst-case time for each of these operations is $O(\log n)$.

Exercises

1. Prove that for any integer k such that $1 < k < n$, the $n - 1$ indicator variables $[i \uparrow k]$ with $i \neq k$ are not mutually independent. [Hint: Consider the case $n = 3$.]

2. Recall from Exercise 1 in the previous note that the expected number of descendants of any node in a treap is $O(\log n)$. Why doesn’t the Chernoff-bound argument for depth imply that, with high probability, every node in a treap has $O(\log n)$ descendants? The conclusion is clearly bogus—Every treap has a node with n descendants!—but what's the hole in the argument?

3. Recall from the previous lecture note that a heater is a sort of anti-treap, in which the priorities of the nodes are given, but their search keys are generated independently and uniformly from the unit interval $[0, 1]$.

 Prove that an n-node heater has depth $O(\log n)$ with high probability.