1. Suppose we have n points scattered inside a two-dimensional box. A *kd-tree* recursively subdivides the points as follows. First we split the box into two smaller boxes with a *vertical* line, then we split each of those boxes with *horizontal* lines, and so on, always alternating between horizontal and vertical splits. Each time we split a box, the splitting line partitions the rest of the interior points as *evenly as possible* by passing through a median point in the interior of the box (not on its boundary). If a box doesn’t contain any points, we don’t split it any more; these final empty boxes are called *cells*.

![A kd-tree for 15 points. The dashed line crosses the four shaded cells.](image)

(a) How many cells are there, as a function of n? Prove your answer is correct.

(b) In the worst case, *exactly* how many cells can a horizontal line cross, as a function of n? Prove your answer is correct. Assume that $n = 2^k - 1$ for some integer k.

(c) Suppose we have n points stored in a kd-tree. Describe and analyze an algorithm that counts the number of points above a horizontal line (such as the dashed line in the figure) as quickly as possible. [*Hint: Use part (b).*]

(d) Describe an analyze an efficient algorithm that counts, given a kd-tree storing n points, the number of points that lie inside a rectangle R with horizontal and vertical sides. [*Hint: Use part (c).*]
2. Most graphics hardware includes support for a low-level operation called \textit{blit}, or block transfer, which quickly copies a rectangular chunk of a pixel map (a two-dimensional array of pixel values) from one location to another. This is a two-dimensional version of the standard C library function \textit{memcpy()}.

Suppose we want to rotate an $n \times n$ pixel map 90° clockwise. One way to do this, at least when n is a power of two, is to split the pixel map into four $n/2 \times n/2$ blocks, move each block to its proper position using a sequence of five blits, and then recursively rotate each block. Alternately, we could first recursively rotate the blocks and then blit them into place.

\begin{center}
\begin{tabular}{c}
\begin{tabular}{c}
A B \\
C D \end{tabular}
\end{tabular}
\end{center}
\begin{center}
\begin{tabular}{c}
\begin{tabular}{c}
C A \\
D B \end{tabular}
\end{tabular}
\end{center}
\begin{center}
\begin{tabular}{c}
\begin{tabular}{c}
\text{recurse}
\end{tabular}
\end{tabular}
\end{center}

Two algorithms for rotating a pixel map.
Solid arrows indicate blitting the blocks into place; hollow arrows indicate recursively rotating the blocks.

(a) Prove that both versions of the algorithm are correct when n is a power of two.
(b) \textit{Exactly} how many blits does the algorithm perform when n is a power of two?
(c) Describe how to modify the algorithm so that it works for arbitrary n, not just powers of two. How many blits does your modified algorithm perform?
(d) What is your algorithm’s running time if a $k \times k$ blit takes $O(k^2)$ time?
(e) What if a $k \times k$ blit takes only $O(k)$ time?
3. For this problem, a *subtree* of a binary tree means any connected subgraph. A binary tree is *complete* if every internal node has two children, and every leaf has exactly the same depth. Describe and analyze a recursive algorithm to compute the largest complete subtree of a given binary tree. Your algorithm should return the root and the depth of this subtree.

![Binary Tree Diagram]

The largest complete subtree of this binary tree has depth 2.