1. A meldable priority queue stores a set of keys from some totally-ordered universe (such as the integers) and supports the following operations:

- **MAKEQUEUE**: Return a new priority queue containing the empty set.
- **FINDMIN(Q)**: Return the smallest element of Q (if any).
- **DELETEMIN(Q)**: Remove the smallest element in Q (if any).
- **INSERT(Q, x)**: Insert element x into Q, if it is not already there.
- **DECREASEKEY(Q, x, y)**: Replace an element x ∈ Q with a smaller key y. (If y > x, the operation fails.) The input is a pointer directly to the node in Q containing x.
- **DELETE(Q, x)**: Delete the element x ∈ Q. The input is a pointer directly to the node in Q containing x.
- **MELD(Q_1, Q_2)**: Return a new priority queue containing all the elements of Q_1 and Q_2; this operation destroys Q_1 and Q_2.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where each node stores a key, along with pointers to its parent and two children. **MELD** can be implemented using the following randomized algorithm:

\[
\begin{align*}
\text{MELD}(Q_1, Q_2): \\
&\text{if } Q_1 \text{ is empty return } Q_2 \\
&\text{if } Q_2 \text{ is empty return } Q_1 \\
&\text{if } \text{key}(Q_1) > \text{key}(Q_2) \\
&\quad \text{swap } Q_1 \leftrightarrow Q_2 \\
&\quad \text{with probability } 1/2 \\
&\quad \text{left}(Q_1) \leftarrow \text{MELD}(\text{left}(Q_1), Q_2) \\
&\quad \text{else} \\
&\quad \text{right}(Q_1) \leftarrow \text{MELD}(\text{right}(Q_1), Q_2) \\
&\text{return } Q_1
\end{align*}
\]

(a) Prove that for any heap-ordered binary trees Q_1 and Q_2 (not just those constructed by the operations listed above), the expected running time of MELD(Q_1, Q_2) is O(log n), where n is the total number of nodes in both trees. [Hint: How long is a random root-to-leaf path in an n-node binary tree if each left/right choice is made with equal probability?]

(b) Show that each of the other meldable priority queue operations can be implemented with at most one call to MELD and O(1) additional time. (This implies that every operation takes O(log n) expected time.)
2. Recall that a priority search tree is a binary tree in which every node has both a search key and a priority, arranged so that the tree is simultaneously a binary search tree for the keys and a min-heap for the priorities. A heater is a priority search tree in which the priorities are given by the user, and the search keys are distributed uniformly and independently at random in the real interval $[0, 1]$. Intuitively, a heater is the ‘opposite’ of a treap.

The following problems consider an n-node heater T whose node priorities are the integers from 1 to n. We identify nodes in T by their priorities; thus, ‘node 5’ means the node in T with priority 5. The min-heap property implies that node 1 is the root of T. Finally, let i and j be integers with $1 \leq i < j \leq n$.

(a) Prove that in a random permutation of the $(i + 1)$-element set $\{1, 2, \ldots, i, j\}$, elements i and j are adjacent with probability $2/(i + 1)$.

(b) Prove that node i is an ancestor of node j with probability $2/(i + 1)$. [Hint: Use part (a)!]

(c) What is the probability that node i is a descendant of node j? [Hint: Don’t use part (a)!]

(d) What is the exact expected depth of node j?

3. Let P be a set of n points in the plane. The staircase of P is the set of all points in the plane that have at least one point in P both above and to the right.

(a) Describe an algorithm to compute the staircase of a set of n points in $O(n \log n)$ time.

(b) Describe and analyze a data structure that stores the staircase of a set of points, and an algorithm $\textsc{Above?}(x, y)$ that returns \textsc{True} if the point (x, y) is above the staircase, or \textsc{False} otherwise. Your data structure should use $O(n)$ space, and your $\textsc{Above?}$ algorithm should run in $O(\log n)$ time.