1. For each statement below, check “True” if the statement is always true and “False” otherwise. Each correct answer is worth +1 point; each incorrect answer is worth −½ point; checking “I don’t know” is worth +¼ point; and flipping a coin is (on average) worth +¼ point. You do not need to prove your answer is correct.

 Read each statement very carefully. Some of these are deliberately subtle.

 (a) If 2 + 2 = 5, then Jeff is the Queen of England.

 (b) For all languages L_1 and L_2, the language $L_1 \cup L_2$ is regular.

 (c) For all languages $L \subseteq \Sigma^*$, if L is not regular, then $\Sigma^* \setminus L$ cannot be represented by a regular expression.

 (d) For all languages L_1 and L_2, if $L_1 \subseteq L_2$ and L_1 is regular, then L_2 is regular.

 (e) For all languages L_1 and L_2, if $L_1 \subseteq L_2$ and L_1 is not regular, then L_2 is not regular.

 (f) For all languages L, if L is regular, then L has no infinite fooling set.

 (g) The language $\{0^m 1^n \mid 0 \leq m + n \leq 374\}$ is regular.

 (h) The language $\{0^m 1^n \mid 0 \leq m - n \leq 374\}$ is regular.

 (i) For every language L, if the language $L^R = \{w^R \mid w \in L\}$ is regular, then L is also regular. (Here w^R denotes the reversal of string w; for example, $(\text{BACKWARD})^R = \text{DRAWKCA}$.)

 (j) Every context-free language is regular.

2. Let L be the set of strings in $\{0, 1\}^*$ in which every run of consecutive 0s has even length and every run of consecutive 1s has odd length.

 (a) Give a regular expression that represents L.

 (b) Construct a DFA that recognizes L.

 You do not need to prove that your answers are correct.

3. For each of the following languages over the alphabet $\{0, 1\}$, either prove that the language is regular or prove that the language is not regular. Exactly one of these two languages is regular.

 (a) The set of all strings in which the substrings 00 and 11 appear the same number of times.

 (b) The set of all strings in which the substrings 01 and 10 appear the same number of times.

 For example, both of these languages contain the string 1100001101101.
4. Consider the following recursive function:

\[
stutter(w) := \begin{cases}
\epsilon & \text{if } w = \epsilon \\
 a \cdot stutter(x) & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^*
\end{cases}
\]

For example, \(stutter(00101) = 0000110011\).

Prove that for any regular language \(L\), the following languages are also regular.

(a) \(STUTTER(L) := \{stutter(w) \mid w \in L\}\).
(b) \(STUTTER^{-1}(L) := \{w \mid stutter(w) \in L\}\).

5. Recall that string concatenation and string reversal are formally defined as follows:

\[
w \cdot y := \begin{cases}
y & \text{if } w = \epsilon \\
 a \cdot (x \cdot y) & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^*
\end{cases}
\]

\[
w^R := \begin{cases}
\epsilon & \text{if } w = \epsilon \\
x^R \cdot a & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^*
\end{cases}
\]

Prove that \((w \cdot x)^R = x^R \cdot w^R\), for all strings \(w\) and \(x\). Your proof should be complete, concise, formal, and self-contained.