Proving that a language \(L \) is undecidable by reduction requires several steps:

- Choose a language \(L' \) that you already know is undecidable. Typical choices for \(L' \) include:

 \[
 \begin{align*}
 \text{ACCEPT} & := \{ (M, w) \mid M \text{ accepts } w \} \\
 \text{REJECT} & := \{ (M, w) \mid M \text{ rejects } w \} \\
 \text{HALT} & := \{ (M, w) \mid M \text{ halts on } w \} \\
 \text{DIVERGE} & := \{ (M, w) \mid M \text{ diverges on } w \} \\
 \text{NEVERACCEPT} & := \{ (M) \mid \text{ACCEPT}(M) = \emptyset \} \\
 \text{NEVERREJECT} & := \{ (M) \mid \text{REJECT}(M) = \emptyset \} \\
 \text{NEVERHALT} & := \{ (M) \mid \text{HALT}(M) = \emptyset \} \\
 \text{NEVERDIVERGE} & := \{ (M) \mid \text{DIVERGE}(M) = \emptyset \}
 \end{align*}
 \]

- Describe an algorithm (really a Turing machine) \(M' \) that decides \(L' \), using a Turing machine \(M \) that decides \(L \) as a black box. Typically this algorithm has the following form:

 Given a string \(w \), transform it into another string \(x \), such that \(M \) accepts \(x \) if and only if \(w \in L' \).

- Prove that your Turing machine is correct. This almost always requires two separate steps:
 - Prove that if \(M \) accepts \(w \) then \(w \in L' \).
 - Prove that if \(M \) rejects \(w \) then \(w \notin L' \).

Prove that the following languages are undecidable:

1. \(\text{ACCEPTILLINI} := \{ (M) \mid M \text{ accepts the string } \text{ILLINI} \} \)
2. \(\text{ACCEPTTHREE} := \{ (M) \mid M \text{ accepts exactly three strings} \} \)
3. \(\text{ACCEPTPALINDROME} := \{ (M) \mid M \text{ accepts at least one palindrome} \} \)