Describe algorithms for the following problems. The input for each problem is string \(\langle M, w \rangle \) that encodes a standard (one-tape, one-track, one-head) Turing machine \(M \) whose tape alphabet is \(\{0, 1, \square\} \) and a string \(w \in \{0, 1\}^* \).

1. Does \(M \) accept \(w \) after at most \(|w|^2 \) steps?
2. If we run \(M \) with input \(w \), does \(M \) ever move its head to the right?

2\(\frac{1}{2} \). If we run \(M \) with input \(w \), does \(M \) ever move its head to the right twice in a row?

2\(\frac{3}{4} \). If we run \(M \) with input \(w \), does \(M \) move its head to the right more than \(2^{|w|} \) times?

3. If we run \(M \) with input \(w \), does \(M \) ever change a symbol on the tape?

3\(\frac{1}{2} \). If we run \(M \) with input \(w \), does \(M \) ever change a \(\square \) on the tape to either 0 or 1?

4. If we run \(M \) with input \(w \), does \(M \) ever leave its start state?

In contrast, as we will see later, the following problems are all undecidable!

1. Does \(M \) accept \(w \)?

1\(\frac{1}{2} \). If we run \(M \) with input \(w \), does \(M \) ever halt?

2. If we run \(M \) with input \(w \), does \(M \) ever move its head to the right three times in a row?

3. If we run \(M \) with input \(w \), does \(M \) ever change a \(\square \) on the tape to 1?

3\(\frac{1}{2} \). If we run \(M \) with input \(w \), does \(M \) ever change either 0 or 1 on the tape to \(\square \)?

4. If we run \(M \) with input \(w \), does \(M \) ever reenter its start state?