Describe how to simulate an arbitrary Turing machine to make it error-tolerant. Specifically, given an arbitrary Turing machine M, describe a new Turing machine M' that accepts and rejects exactly the same strings as M, even though an evil pixie named Lenny will move the head of M' to an arbitrary location on the tape some finite number of unknown times during the execution of M'.

You do not have to describe M' in complete detail, but do give enough details that a seasoned Turing machine programmer could work out the remaining mechanical details.

As stated, this problem has no solution! If M halts on all inputs after a finite number of steps, then Lenny can make any substring of the input string completely invisible to M. For example, if the true input string is *INPUT-STRING*, Lenny can make M believe the input string is actually *IMPING*, by moving the head to the second *I* whenever it tries to move to *R*, and by moving the head to *P* when it tries to move to *U*. Because M halts after a finite number of steps, Lenny only has a finite number of opportunities to move the head.

In fact, with more care, Lenny can make M think the input string is any string that uses only symbols from the actual input string; if the true input string is *INPUT-STRING*, Lenny can make M believe the input string is actually *GRINNING-PUTIN-IS-GRINNING*.)

However, there are several different ways to rescue the problem. For each of the following restrictions on Lenny’s behavior, and for any Turing machine M, one can design a Turing machine M' that simulates M despite Lenny’s interference.

- Lenny can move the head only a **bounded** number of times. For example: Lenny can move the head at most 374 times.
- Whenever Lenny moves the head, he changes the state of the machine to a special error state *lenny*.
- Whenever Lenny moves the head, he moves it to the left end of the tape.
- Whenever Lenny moves the head, he moves it to a blank cell to the right of all non-blank cells.
- Whenever Lenny moves the head, he moves it to a cell containing a particular symbol in the input alphabet, say θ.