1. Clearly indicate the following spanning trees in the weighted graph pictured below. Some of these subproblems have more than one correct answer.

(a) A depth-first spanning tree rooted at \(s\)
(b) A breadth-first spanning tree rooted at \(s\)
(c) A shortest-path tree rooted at \(s\)
(d) A minimum spanning tree
(e) A maximum spanning tree

2. A polygonal path is a sequence of line segments joined end-to-end; the endpoints of these line segments are called the vertices of the path. The length of a polygonal path is the sum of the lengths of its segments. A polygonal path with vertices \((x_1, y_1), (x_2, y_2), \ldots, (x_k, y_k)\) is monotonically increasing if \(x_i < x_{i+1}\) and \(y_i < y_{i+1}\) for every index \(i\)—informally, each vertex of the path is above and to the right of its predecessor.

Suppose you are given a set \(S\) of \(n\) points in the plane, represented as two arrays \(X[1..n]\) and \(Y[1..n]\). Describe and analyze an algorithm to compute the length of the maximum-length monotonically increasing path with vertices in \(S\). Assume you have a subroutine \(\text{LENGTH}(x, y, x', y')\) that returns the length of the segment from \((x, y)\) to \((x', y')\).
3. Suppose you are maintaining a circular array $X[0..n-1]$ of counters, each taking a value from the set $\{0,1,2\}$. The following algorithm increments one of the counters; if the counter overflows, the algorithm resets it 0 and recursively increments its two neighbors.

\begin{verbatim}
INCREMENT(i):
 X[i] ← X[i] + 1
 if X[i] = 3
 X[i] ← 0
 INCREMENT((i - 1) mod n)
 INCREMENT((i + 1) mod n)
\end{verbatim}

(a) Suppose $n = 5$ and $X = [2, 2, 2, 2, 2]$. What does X contain after we call $INCREMENT(3)$?
(b) Suppose all counters are initially 0. Prove that $INCREMENT$ runs in $O(1)$ amortized time.

4. A looped tree is a weighted, directed graph built from a binary tree by adding an edge from every leaf back to the root. Every edge has non-negative weight.

![A looped tree.](image)

(a) How much time would Dijkstra's algorithm require to compute the shortest path from an arbitrary vertex s to another arbitrary vertex t, in a looped tree with n vertices?
(b) Describe and analyze a faster algorithm. Your algorithm should compute the actual shortest path, not just its length.

5. Consider the following algorithm for finding the smallest element in an unsorted array:

\begin{verbatim}
RANDOMMIN(A[1..n]):
 min ← ∞
 for i ← 1 to n in random order
 if A[i] < min
 min ← A[i] (*)
 return min
\end{verbatim}

Assume the elements of A are all distinct.

(a) In the worst case, how many times does $RANDOMMIN$ execute line (\ast)?
(b) What is the probability that line (\ast) is executed during the last iteration of the for loop?
(c) What is the exact expected number of executions of line (\ast)?