1. Suppose we are given a directed acyclic graph G with labeled vertices. Every path in G has a label, which is a string obtained by concatenating the labels of its vertices in order. Recall that a palindrome is a string that is equal to its reversal.

Describe and analyze an algorithm to find the length of the longest palindrome that is the label of a path in G. For example, given the graph below, your algorithm should return the integer 6, which is the length of the palindrome HANNAH.

![Graph Diagram]

2. Let G be a connected directed graph that contains both directions of every edge; that is, if $u \rightarrow v$ is an edge in G, its reversal $v \rightarrow u$ is also an edge in G. Consider the following non-standard traversal algorithm.

\[\text{SPAGHETTI}(v):\]
\[\text{mark } v \quad \text{\texttt{\{"visit" }v\text{"\}}}\]
\[\text{if there is a white arc } v \rightarrow w\]
\[\quad \text{if } w \text{ is unmarked}\]
\[\quad \text{color } w \rightarrow v \text{ green}\]
\[\quad \text{color } v \rightarrow w \text{ red} \quad \text{\texttt{\{"traverse" }v \rightarrow w\text{"\}}}\]
\[\text{SPAGHETTI}(w)\]
\[\text{else if there is a green arc } v \rightarrow w\]
\[\quad \text{color } v \rightarrow w \text{ red} \quad \text{\texttt{\{"traverse" }v \rightarrow w\text{"\}}}\]
\[\text{SPAGHETTI}(w)\]
\[\text{\texttt{(\{\text{\textit{else every arc } v \rightarrow w \text{ is red, so halt}}\})}}\]

We informally say that this algorithm “visits” vertex v every time it marks v, and it “traverses” edge $v \rightarrow w$ when it colors that edge red. Unlike our standard graph-traversal algorithms, SPAGHETTI may (in fact, will) mark/visit each vertex more than once.

The following series of exercises leads to a proof that SPAGHETTI traverses each directed edge of G exactly once. Most of the solutions are very short.

(a) Prove that no directed edge in G is traversed more than once.
(b) When the algorithm visits a vertex v for the kth time, exactly how many edges into v are red, and exactly how many edges out of v are red? [Hint: Consider the starting vertex s separately from the other vertices.]
(c) Prove each vertex \(v \) is visited at most \(\deg(v) \) times, except the starting vertex \(s \), which is visited at most \(\deg(s) + 1 \) times. This claim immediately implies that \(\text{SPAGHETTI}\text{TRAVERSAL}(G) \) terminates.

(d) Prove that when \(\text{SPAGHETTI}\text{TRAVERSAL}(G) \) ends, the last visited vertex is the starting vertex \(s \).

(e) For every vertex \(v \) that \(\text{SPAGHETTI}\text{TRAVERSAL}(G) \) visits, prove that all edges incident to \(v \) (either in or out) are red when \(\text{SPAGHETTI}\text{TRAVERSAL}(G) \) halts. \textit{[Hint: Consider the vertices in the order that they are marked for the first time, starting with} \(s \), \textit{and prove the claim by induction.]}

(f) Prove that \(\text{SPAGHETTI}\text{TRAVERSAL}(G) \) visits every vertex of \(G \).

(g) Finally, prove that \(\text{SPAGHETTI}\text{TRAVERSAL}(G) \) traverses every edge of \(G \) exactly once.