1. A meldable priority queue stores a set of values, called priorities, from some totally-ordered universe (such as the integers) and supports the following operations:

- **MAKEQUEUE**: Return a new priority queue containing the empty set.
- **FINDMIN(Q)**: Return the smallest element of Q (if any).
- **DELETEMIN(Q)**: Remove the smallest element in Q (if any).
- **INSERT(Q, x)**: Insert priority x into Q, if it is not already there.
- **DECREASE(Q, x, y)**: Replace some element x ∈ Q with a smaller priority y. (If y > x, the operation fails.) The input is a pointer directly to the node in Q containing x.
- **DELETE(Q, x)**: Delete the priority x ∈ Q. The input is a pointer directly to the node in Q containing x.
- **MELD(Q₁, Q₂)**: Return a new priority queue containing all the elements of Q₁ and Q₂; this operation destroys Q₁ and Q₂.

A simple way to implement such a data structure is to use a heap-ordered binary tree — each node stores a priority, which is smaller than the priorities of its children, along with pointers to its parent and at most two children. MELD can be implemented using the following randomized algorithm:

\[
\begin{align*}
\text{MELD}(Q₁, Q₂): \\
\text{if } Q₁ \text{ is empty return } Q₂ \\
\text{if } Q₂ \text{ is empty return } Q₁ \\
\text{if } \text{priority}(Q₁) > \text{priority}(Q₂) \\
\text{ swap } Q₁ \leftrightarrow Q₂ \\
\text{ with probability } 1/2 \\
\text{ left}(Q₁) \leftarrow \text{MELD}(\text{left}(Q₁), Q₂) \\
\text{ else } \\
\text{ right}(Q₁) \leftarrow \text{MELD}(\text{right}(Q₁), Q₂) \\
\text{ return } Q₁
\end{align*}
\]

(a) Prove that for any heap-ordered binary trees Q₁ and Q₂ (not just those constructed by the operations listed above), the expected running time of MELD(Q₁, Q₂) is \(O(\log n)\), where \(n = |Q₁| + |Q₂|\). [Hint: How long is a random root-to-leaf path in an n-node binary tree if each left/right choice is made uniformly and independently at random?]

(b) Show that each of the other meldable priority queue operations can be implemented with at most one call to MELD and \(O(1)\) additional time. (This implies that every operation takes \(O(\log n)\) expected time.)

2. Recall that a priority search tree is a binary tree in which every node has both a search key and a priority, arranged so that the tree is simultaneously a binary search tree for the keys and a min-heap for the priorities. A treap is a priority search tree whose search keys are given by the user and whose priorities are independent random numbers.

A heater is a priority search tree whose priorities are given by the user and whose search keys are distributed uniformly and independently at random in the real interval \([0, 1]\). Intuitively, a heater is a sort of anti-treap.¹

¹There are those who think that life has nothing left to chance, a host of holy horrors to direct our aimless dance.
The following problems consider an \(n \)-node heater \(T \). We identify nodes in \(T \) by their priority rank; for example, “node 5” means the node in \(T \) with the 5th smallest priority. The min-heap property implies that node 1 is the root of \(T \). You may assume all search keys and priorities are distinct. Finally, let \(i \) and \(j \) be arbitrary integers with \(1 \leq i < j \leq n \).

(a) Prove that if we permute the set \(\{1, 2, \ldots, n\} \) uniformly at random, integers \(i \) and \(j \) are adjacent with probability \(\frac{2}{n} \).

(b) Prove that node \(i \) is an ancestor of node \(j \) with probability \(\frac{2}{i + 1} \). [Hint: Use part (a)!]

(c) What is the probability that node \(i \) is a descendant of node \(j \)? [Hint: Don’t use part (a)!]

(Extra credit; due October 15.) In the usual theoretical presentation of treaps, the priorities are random real numbers chosen uniformly from the interval \([0, 1]\). In practice, however, computers have access only to random bits. This problem asks you to analyze an implementation of treaps that takes this limitation into account.

Suppose the priority of a node \(v \) is abstractly represented as an infinite sequence \(\pi_v[1..\infty] \) of random bits, which is interpreted as the rational number

\[
priority(v) = \sum_{i=1}^{\infty} \pi_v[i] \cdot 2^{-i}.
\]

However, only a finite number \(\ell_v \) of these bits are actually known at any given time. When a node \(v \) is first created, none of the priority bits are known: \(\ell_v = 0 \). We generate (or “reveal”) new random bits only when they are necessary to compare priorities. The following algorithm compares the priorities of any two nodes in \(O(1) \) expected time:

```plaintext
LARGER_PRIORITY(v, w):
for i ← 1 to \infty
    if i > \ell_v
        \ell_v ← i; \pi_v[i] ← RANDOM_BIT
    if i > \ell_w
        \ell_w ← i; \pi_w[i] ← RANDOM_BIT
    if \pi_v[i] > \pi_w[i]
        return v
    else if \pi_v[i] < \pi_w[i]
        return w
```

Suppose we insert \(n \) items one at a time into an initially empty treap. Let \(L = \sum_v \ell_v \) denote the total number of random bits generated by calls to LARGER_PRIORITY during these insertions.

(a) Prove that \(E[L] = \Theta(n) \).

(b) Prove that \(E[\ell_v] = \Theta(1) \) for any node \(v \). [Hint: This is equivalent to part (a). Why?]

(c) Prove that \(E[\ell_{\text{root}}] = \Theta(\log n) \). [Hint: Why doesn’t this contradict part (b)?)