1. Prove that the following problem is NP-hard.

\textsc{SetCover}: Given a collection of sets \(\{S_1, \ldots, S_m\} \), find the smallest sub-collection of \(S_i \)'s that contains all the elements of \(\bigcup_i S_i \).

2. Given an undirected graph \(G \) and a subset of vertices \(S \), a \textit{Steiner tree} of \(S \) in \(G \) is a subtree of \(G \) that contains every vertex in \(S \). If \(S \) contains every vertex of \(G \), a Steiner tree is just a spanning tree; if \(S \) contains exactly two vertices, any path between them is a Steiner tree.

Given a graph \(G \), a vertex subset \(S \), and an integer \(k \), the \textit{Steiner tree problem} requires us to decide whether there is a Steiner tree of \(S \) in \(G \) with at most \(k \) edges. Prove that the Steiner tree problem is NP-hard. \textit{[Hint: Reduce from VertexCover, or SetCover, or 3Sat.]}

3. Let \(G \) be a directed graph whose edges are colored red and white. A \textit{Canadian Hamiltonian path} is a Hamiltonian path whose edges are alternately red and white. The \textsc{CanadianHamiltonianPath} problem asks us to find a Canadian Hamiltonian path in a graph \(G \). (Two weeks ago we looked for Hamiltonian paths that cycled through colors on the vertices instead of edges.)

(a) Prove that \textsc{CanadianHamiltonianPath} is NP-Complete.

(b) Reduce \textsc{CanadianHamiltonianPath} to \textsc{HamiltonianPath}.