1. Describe and analyze an algorithm to reconstruct a binary search tree T, given the sequence of keys visited by a postorder traversal of T (as in Quiz 0 problem 3).

Assume that all the input keys are distinct. Don't worry about detecting invalid inputs; the input sequence is guaranteed to be the postorder traversal of some binary search tree.

2. An array $A[0..n-1]$ of n distinct numbers is bitonic if there are unique indices i and j such that $A[(i-1) \mod n] < A[i] > A[(i+1) \mod n]$ and $A[(j-1) \mod n] > A[j] < A[(j+1) \mod n]$. In other words, a bitonic sequence either consists of an increasing sequence followed by a decreasing sequence, or can be circularly shifted to become so. For example,

\[
\begin{array}{cccccccc}
4 & 6 & 9 & 8 & 7 & 5 & 1 & 2 & 3 \\
3 & 6 & 9 & 8 & 7 & 5 & 1 & 2 & 4 \\
\end{array}
\]

is bitonic, but

\[
\begin{array}{cccccccc}
3 & 6 & 9 & 8 & 7 & 5 & 1 & 2 & 4 \\
3 & 6 & 9 & 8 & 7 & 5 & 1 & 2 & 4 \\
\end{array}
\]

is not bitonic.

Describe and analyze an algorithm to find the smallest element in an n-element bitonic array in $O(\log n)$ time. You may assume that the numbers in the input array are distinct.

3. Let S be a set of n points in the plane. A point $p \in S$ maximal (or Pareto-optimal) if no point in S is both above and to the right of p. The maximal points in S intuitively define a staircase with all the other points in S below and to the left.

Describe and analyze a divide-and-conquer algorithm to find all the maximal points in a given n-point set in $O(n \log n)$ time. You may assume all the input points have distinct x-coordinates and distinct y-coordinates.

\[
\text{Maximal points define a staircase.}
\]

*4. [Extra Credit] Describe and analyze an algorithm to find all the maximal points in a given n-point set in $O(n \log m)$ time, where m is the number of maximal points. In particular, your algorithm should run in $O(n)$ time if the input set contains only one maximal point, and in $O(n \log n)$ time in the worst case. [Hint: I know of at least two different ways to do this.]