1. Clearly indicate the following structures in the weighted graph pictured below. Some of these subproblems have more than one correct answer.

(a) A depth-first spanning tree rooted at s
(b) A breadth-first spanning tree rooted at s
(c) A shortest-path tree rooted at s
(d) A minimum spanning tree
(e) A minimum (s,t)-cut

2. A multistack consists of an infinite series of stacks S_0, S_1, S_2, \ldots, where the ith stack S_i can hold up to 3^i elements. Whenever a user attempts to push an element onto any full stack S_i, we first pop all the elements off S_i and push them onto stack S_{i+1} to make room. (Thus, if S_{i+1} is already full, we first recursively move all its members to S_{i+2}.) Moving a single element from one stack to the next takes $O(1)$ time.

(a) In the worst case, how long does it take to push one more element onto a multistack containing n elements?
(b) Prove that the amortized cost of a push operation is $O(\log n)$, where n is the maximum number of elements in the multistack.

3. Describe and analyze an algorithm to determine, given an undirected graph $G = (V,E)$ and three vertices $u, v, w \in V$ as input, whether G contains a simple path from u to w that passes through v. You do not need to prove your algorithm is correct.
4. Suppose we are given an \(n \)-digit integer \(X \). Repeatedly remove one digit from either end of \(X \) (your choice) until no digits are left. The \textit{square-depth} of \(X \) is the maximum number of perfect squares that you can see during this process. For example, the number 32492 has square-depth 3, by the following sequence of removals:

\[
32492 \rightarrow \underline{32492} \rightarrow \underline{324} \rightarrow \underline{324} \rightarrow \underline{324} \rightarrow \underline{324} \rightarrow \underline{324} \rightarrow 4.
\]

Describe and analyze an algorithm to compute the square-depth of a given integer \(X \), represented as an array \(X[1..n] \) of \(n \) decimal digits. Assume you have access to a subroutine \texttt{IsSquare} that determines whether a given \(k \)-digit number (represented by an array of digits) is a perfect square \textit{in} \(O(k^2) \) time.

5. Suppose we are given two sorted arrays \(A[1..n] \) and \(B[1..n] \) containing \(2n \) distinct numbers. Describe and analyze an algorithm that finds the \(n \)th smallest element in the union \(A \cup B \) in \(O(\log n) \) time.

6. Recall the following problem from Homework 2:

- \texttt{3WayPartition}: Given a set \(X \) of positive integers, determine whether there are three disjoint subsets \(A, B, C \subseteq X \) such that \(A \cup B \cup C = X \) and

\[
\sum_{a \in A} a = \sum_{b \in B} b = \sum_{c \in C} c.
\]

(a) Prove that \texttt{3WayPartition} is NP-hard. \textit{[Hint: Don't try to reduce from 3SAT or 3COLOR; in this rare instance, the 3 is just a coincidence.]}

(b) In Homework 2, you described an algorithm to solve \texttt{3WayPartition} in \(O(nS^2) \) time, where \(S \) is the sum of all elements of \(X \). Why doesn't this algorithm imply that \(P=NP \)?

7. Describe and analyze efficient algorithms to solve the following problems:

(a) Given an array of \(n \) integers, does it contain two elements \(a, b \) such that \(a + b = 0 \)?

(b) Given an array of \(n \) integers, does it contain three elements \(a, b, c \) such that \(a + b + c = 0 \)?