1. Clearly indicate the following structures in the weighted graph pictured below. Some of these subproblems have more than one correct answer.

(a) A depth-first spanning tree rooted at s
(b) A breadth-first spanning tree rooted at s
(c) A shortest-path tree rooted at s
(d) A minimum spanning tree
(e) A minimum (s, t)-cut

2. A multistack consists of an infinite series of stacks S_0, S_1, S_2, \ldots, where the ith stack S_i can hold up to 3^i elements. Whenever a user attempts to push an element onto any full stack S_i, we first pop all the elements off S_i and push them onto stack S_{i+1} to make room. (Thus, if S_{i+1} is already full, we first recursively move all its members to S_{i+2}.) Moving a single element from one stack to the next takes $O(1)$ time.

(a) In the worst case, how long does it take to push one more element onto a multistack containing n elements?
(b) Prove that the amortized cost of a push operation is $O(\log n)$, where n is the maximum number of elements in the multistack.

3. Suppose we are given an array $A[1..n]$ of numbers with the special property that $A[1] \geq A[2]$ and $A[n-1] \leq A[n]$. A local minimum is an element $A[i]$ such that $A[i-1] \geq A[i]$ and $A[i] \leq A[i+1]$. For example, there are six local minima in the following array:

$$
\begin{array}{cccccccccccc}
9 & 7 & 7 & 2 & 1 & 3 & 7 & 5 & 4 & 7 & 3 & 3 & 4 & 8 & 6 & 9 \\
\end{array}
$$

Describe and analyze an algorithm that finds a local minimum in the array A in $O(\log n)$ time.
4. Suppose we are given an n-digit integer X. Repeatedly remove one digit from either end of X (your choice) until no digits are left. The square-depth of X is the maximum number of perfect squares that you can see during this process. For example, the number 32492 has square-depth 3, by the following sequence of removals:

$$32492 \rightarrow 3249 \rightarrow 324 \rightarrow 32 \rightarrow 4.$$

Describe and analyze an algorithm to compute the square-depth of a given integer X, represented as an array $X[1..n]$ of n decimal digits. Assume you have access to a subroutine IsSquare that determines whether a given k-digit number (represented by an array of digits) is a perfect square in $O(k^2)$ time.

5. Suppose we are given an $n \times n$ square grid, some of whose squares are colored black and the rest white. Describe and analyze an algorithm to determine whether tokens can be placed on the grid so that

- every token is on a white square;
- every row of the grid contains exactly one token; and
- every column of the grid contains exactly one token.

Your input is a two dimensional array $IsWhite[1..n, 1..n]$ of booleans, indicating which squares are white. (You solved an instance of this problem in the last quiz.)

6. Recall the following problem from Homework 2:

- 3WAYPARTITION: Given a set X of positive integers, determine whether there are three disjoint subsets $A, B, C \subseteq X$ such that $A \cup B \cup C = X$ and

$$\sum_{a \in A} a = \sum_{b \in B} b = \sum_{c \in C} c.$$

(a) Prove that 3WAYPARTITION is NP-hard. [Hint: Don't try to reduce from 3SAT or 3COLOR; in this rare instance, the 3 is just a coincidence.]

(b) In Homework 2, you described an algorithm to solve 3WAYPARTITION in $O(nS^2)$ time, where S is the sum of all elements of X. Why doesn't this algorithm imply that P=NP?

7. Describe and analyze efficient algorithms to solve the following problems:

(a) Given an array of n integers, does it contain two elements a, b such that $a + b = 0$?

(b) Given an array of n integers, does it contain three elements a, b, c such that $a + b + c = 0$?