\[f(u,v,w,x,y) = uv + wxy \]
\[g(u,v,w,x,y) = uv + wxy' \]

\[Y = \{ x,y \} \]
\[f_y^*(u,v,w,x,y) = f(x=0, y=0, v,u,w) = uv + w \]
\[g_y^*(u,v,w,x,y) = g(u,v,w,x=0, y=0) = uv \]

So residuals are different!

or prove using contradiction

\[f = X_i f_{x_i} + X_i' f_{x_i} \]
\[g = X_i g_{x_i} + X_i' g_{x_i} \]

assuming residuals are always equal we get \(f = g \) which is a contradiction.
two variables can be chosen from m in $\binom{m}{2}$ ways.

$m-2$ variables are used to select the residual function.

So the Karnaugh map with $(m-2)$ variables has 2^{m-2} squares and each square can be filled with 0, 1, $g(c)$ or $\bar{g}(c)$. So map can be filled in $(4)^{2^{m-2}}$ ways.

$g(c)$ can be formed in $2^4 = 16$ ways and we exclude cases where $g(c) = 0, 1$. So we have $16 - 2 = 14$ cases.

So total decompositions are $\binom{m}{2} \cdot (4)^{2^{m-2}} \cdot 14$.
3. We need to find weights \(\{a_i\} \) and a positive threshold \(T \) such that \(f(x_1, \ldots, x_n) = 1 \) iff
\[
\sum_{i=1}^{n} a_i x_i \geq T
\]
(\(+ \) is arithmetic, \(\{x_i\} \) viewed as integers)

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>f</th>
<th>condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(a_3 \geq T)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(a_2 < T)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(a_2 + a_3 \geq T)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(a_1 < T)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(a_1 + a_3 \geq T)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>(a_1 + a_2 \geq T)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(a_1 + a_2 + a_3 \geq T)</td>
</tr>
</tbody>
</table>

Solution exists, one set might be \(a_3 = 5, a_2 = 3, a_1 = 2, T = 4 \).
4. \[f(u, v, w, x, y, z) = w'y + u'vw'y' + u'vw'x + uv'wxy \]
\(u : \) no consensus

\(v : \) consensus between \(u'vuv'y' \) and \(u'v'w'x' \)
\(q = u'w'x'y' \), \(D_w = \{w'y'\} \)
\(q \cap D_w = w' \)
\(q \neq q \cap D_w \therefore \) Hazard exists

So input pairs exhibiting this hazard are
(010100, 000100) (010101, 000101)

Product term to add is \(u'w'x'y' \)

\(w : \) consensus between \(w'y \) and \(uv'wxy \)
\(q = uv'x'y \), \(D_w = \{} \)
\(q \cap D_w = uv'x'y \)
\(q \neq q \cap D_w \therefore \) Hazard exists

Input pairs (101111, 100111) (101110, 100110)

Product term to add is \(uv'x'y \)

\(x : \) no consensus
\[y : \text{consensus between } w'y \text{ and } u'v w' y' \]
\[q = u'v w' \quad D_y = \{ u'v' w' x' \} \]
\[q \cap D_y = u' w' \]
\[q \neq q \cap D_y \implies \text{Hazard exists} \]

Input pairs are: (010001, 010011) (010101, 010111)
(010000, 010010) (010100, 010110)

Product term to add is u'v w'.

\[z : \text{no consensus} \]