GMove: Group-Level Mobility Modeling Using Geo-Tagged Social Media

Chao Zhang¹, Keyang Zhang¹, Quan Yuan¹, Luming Zhang², Tim Hanratty³, and Jiawei Han¹
University of Illinois at Urbana-Champaign¹
Hefei University of Technology²
U.S. Army Research Lab³
Background

• Mobility modeling aims at understanding human movement regularity.

• It is important to many applications:
 ‣ Urban planning
 ‣ Traffic scheduling
 ‣ Location prediction
 ‣ Activity recommendation
 ‣ ……
Background

• Previous studies mostly use **GPS trace data** to model human mobility.

• The recent prevalence of **geo-tagged social media** (GeoSM) brings new opportunities to this task:

 ‣ In addition to spatial and temporal information, each GeoSM record (e.g., tweet, Facebook post) also has text.

 ‣ The GeoSM data has a much larger size and a much better coverage of the population than GPS trace data.
Our Goal

• We aim to unveil human movement regularity using large-scale GeoSM data.

• Specifically, we answer the following two questions:

 1. **What are the intrinsic states underlying people’s movements?**
 - Here, a state should provide a 3W (where-what-when) view regarding the user’s activity.

 2. **How do people move sequentially between those latent states?**
Challenges

• Dilemma for mobility modeling using GeoSM data:
 ‣ Each user typically has limited GeoSM records, learning a model for every user suffers from severe *data sparsity*.
 ‣ Different users have totally different moving behaviors, learning one model for all the users suffers from *data inconsistency*.

• GeoSM (e.g., tweets) have very short text, making it hard to model the semantics of human activities.
Method Overview

• Relying on Hidden Markov Model, we propose an effective method named GMove.

• Two key modules of GMove:
 ‣ **HMM ensemble learner**: performs group-level HMM learning
 ‣ **Text augmenter**: reduces text sparsity using spatiotemporal signals
Module 1: HMM Ensemble Learner

- Hidden Markov Model (HMM) for mobility modeling:
 - It assumes multiple latent states (e.g., working at office) that govern a user’s movements.
 - The sequence of the latent states follows Markov process.

Note that, as the raw trajectory of each user is sparse, we impose a time constraint (e.g., three hours) to extract dense subsequences for model training.
Module 1: HMM Ensemble Learner

• We group like-behaved users (e.g., Stanford students) and train an HMM for each group:
 ‣ Reduce data sparsity by aggregating the movements of multiple users.
 ‣ Not compromising data consistency because the users in the same group share significant movement regularity.

<table>
<thead>
<tr>
<th></th>
<th>Data Sparsity</th>
<th>Data Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Level</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>Group Level</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Global Level</td>
<td>O</td>
<td>X</td>
</tr>
</tbody>
</table>

Each user has limited records.

Different moving patterns are mixed.
How to Obtain Quality User Groups?

• User grouping and mobility modeling mutually enhance each other:
 ‣ Better user grouping leads to more consistent movement data within each group, which can improve the quality of the HMMs.
 ‣ Better HMMs can better reveal movement regularities, which helps infer the group a user belongs to.
An Iterative Process

• GMove alternates between user grouping and HMM training.

• HMM Training
 ‣ Assume the group memberships of different users are fixed
 ‣ Learn one HMM for each group g

• User Grouping
 ‣ Assume the HMMs of different groups are already learnt
 ‣ For user u, update the membership vector by computing the posterior probability that u belongs to group g
Module 2: Text Augmenter

• Why do we need the text augmenter?
 ‣ The raw text messages are too short.
 ‣ The spatiotemporal distributions of different words can unveil their semantical correlation.

• E.g., consider two users watching the Lakers’ game at the Staples Center.
 ‣ They may post two tweets using two different keywords: “lakers” and “staplescenter”.
 ‣ Although those two keywords do not co-occur in the same tweet, they are spatially and temporally close, and thus correlated.
Text Augmentation

- We discretize the space D into equal-size cells.
 - For each keyword k, we use its spatiotemporal distribution over the 3-D cube to obtain a vector V_k.
 - Given two keywords, we compute their correlation as the cosine distance between their vectors.
Text Augmentation

• Once keyword correlations are computed, we perform weighted sampling to augment raw messages.

Algorithm 1: Text augmentation.

Input: A GSM record x, the target length L.

Output: The augmented text message of x.

1. $A_x \leftarrow$ The original text message e_x;
2. **while** $\text{len}(A_x) < L$ **do**
3. Sample a word $w \in e_x$ with probability $\frac{TF-IDF(w)}{\sum_{v \in e_x} TF-IDF(v)}$;
4. Sample a word $v \in \mathcal{N}_w$ with probability $\frac{\text{corr}(w,v)}{\sum_{u \in \mathcal{N}_w} \text{corr}(w,u)}$;
5. Add v into A_x;
6. **return** A_x;
Experiments

• Data Sets:
 ‣ LA: ~0.6 million geo-tagged tweets published in Los Angeles.
 ‣ NY: ~0.7 million geo-tagged tweets published in New York.
Case Study: Text Augmentation

<table>
<thead>
<tr>
<th>Data</th>
<th>Raw tweet message</th>
<th>Augmented message</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>Y’all just kobe fans not lakers. Let’s go lakers!!</td>
<td>fans(11), game(7), kobe(19), jeremy(6), lakers(26), injury(8), staples(8), center(4), nba(9), bryant(12)</td>
</tr>
<tr>
<td></td>
<td>Fun night! @ Universal Studios Hollywood http://t.co/wMibfyleTW</td>
<td>fun(4), universal(20), studio(16), hollywood(18), night(5), party(7), fame(6), people(13), play(11)</td>
</tr>
<tr>
<td>NY</td>
<td>Nothing better...fresh off the oven! #Italian #bakery #pizza</td>
<td>fresh(7), oven(21), italian(19), bakery(12), pizza(14), bread(6), cook(5), food(12), kitchen(4)</td>
</tr>
<tr>
<td></td>
<td>My trip starts now! @ JFK Airport</td>
<td>jfk(24), international(5), trip(9), travel(6), john(13), kennedy(14), terminal(8), start(6), now(3), airport(12)</td>
</tr>
</tbody>
</table>
Example Group-Level Mobility Models

(a) The mobility model for the first user group (students).

(b) The mobility model for the second user group (tourists).
Quantitative Evaluation: Location Prediction

(a) LA

(b) NY
Summary

• We study the problem of group-level mobility modeling using geo-tagged social media.

• We propose the GMove method:
 ‣ It alternates between user grouping and HMM training to learn group-level models.
 ‣ It leverages keyword spatiotemporal correlations to reduce text sparsity.

• Our experiments show that GMove can effectively retrieve group-level mobility models.
Thanks!