Strength of composites with long-aligned fibers: fiber–fiber and fiber–crack interaction

Arif Masuda,* , Zhe Zhanga and John Botsisb

aDepartment of Civil and Materials Engineering, 842 W Taylor Street (M/C 246), University of Illinois at Chicago, Chicago, IL 60607, USA
bDepartment of Mechanical Engineering, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland

This paper presents a finite element formulation of elasticity to model elastic fracture in composites with long aligned fibers. We have employed a \(B \)-bar type approach which is applicable to compressible as well as nearly incompressible material systems. An energy approach is undertaken to evaluate the stress intensity factor at the crack tip. The effects of strong intact bridging fibers, fibers ahead of the crack tip, and that of temperature variation on the reduction in stress intensity factor at the crack tip have been investigated. Various numerical results are presented to show fiber–fiber and fiber–crack interaction.

* Corresponding author.
for fracture, etc. Moreover, fiber spacing reflects the structure of the composite and is an intermediate scale since it is larger than the scales involved in fiber debonding, fracture and pull out. It is smaller, however, than the macroscales that arise in macrocracking and damage zones. Using this intermediate length scale within a continuum mechanics framework, a set of constitutive equations can be developed that incorporate this parameter which reflects the reinforcement better than volume average parameters.

The present work is aimed at investigating the effects of bridging fibers and fibers in the path of the crack on the stress field and stress intensity factor. Emphasis is placed on a detailed stress analysis within a zone around the crack tip in an effort to establish its boundaries (see Figure 1). Outside this zone homogenization theories may be employed that consider the composite as an orthotropic material. At the boundary of this zone, appropriate conditions need to be imposed to consistently 'glue' the two domains. These later issues will be addressed in our future work. Emphasis in this paper is primarily numerical and rather practical in nature. We incorporate the inherent inhomogeneity and anisotropy in our framework at the variational level and look at material mismatch, interphase boundaries, interaction of the interface boundaries with each other and also with high stresses at the crack tip. These issues render the ensuing problem 'non-smooth' in the classical sense and necessitate the solution method to be numerical in nature and founded on sound mathematical footings. We have employed the finite element method because it is based on variational principles and is a powerful numerical technique that offers a unified approach to such multiphase problems.

The paper is divided into three main sections as follows: Section 2 presents the variational form of the problem, Section 3 develops the finite element formulation of the proposed model and Section 4 gives an account of the evaluation of the stress intensity factor. A detailed set of numerical simulations employing a carefully designed fiber architecture to uniaxial tension is presented in Section 5 and conclusions are drawn in Section 6.

THE VARIATIONAL FRAMEWORK

The in situ strength of a fibrous composite is not only a function of the properties of each of its constituent materials, but also depends on the various energy dissipation mechanisms that lead to matrix cracking and/or inelastic deformations, fiber debonding, slipping, and their ultimate fracture. Some of these mechanisms such as elasto-plastic deformations, damage and cracking in the matrix and necking and fracture in the bridging fibers can be successfully addressed at the constitutive level. However, fiber debonding and pull-out that leads to strong discontinuities in the displacement field are related to the interphase kinematics, and an appropriate way to handle them is to incorporate them in the variational framework. Our objective here is to develop a variationally sound approach that can be used to derive an energy-based criteria for crack propagation and arrest in fibrous composites in the presence of one or more of the above mentioned mechanisms.

Furthermore, an energy-based approach for crack propagation and arrest can readily be extended to the nonlinear regime of material and geometric response. A general framework for such problems is provided by the Hu–Washizu variational principle which considers displacements, strains and stresses as the independent field variables.

Let $\Omega \subset \mathbb{R}^d$ be a bounded open set with piecewise...
smooth boundary Γ. $n_{al} \geq 2$ denotes the number of spatial dimensions. Let Γ_1 represent the fiber–matrix interface with u' and u'' be the displacement fields at the interface of the fibers and the matrix. We can write an energy functional for the hybrid system as

$$\Pi(\varepsilon, \sigma, u, \lambda) := \frac{1}{2} \int_{\Omega} \varepsilon : \sigma \, d\Omega + \int_{\Gamma_1} \lambda(u'' - u')d\Gamma - \Pi_{ad}(u)$$

(1)

where u, σ and ε are the unknown displacement, stress and strain fields, respectively, and λ is a Lagrange multiplier. $\Pi_{ad}(u)$ represents the external work on the composite system. The first term in eqn (1) is the stored energy function, the second term is a Lagrange multiplier ($\varepsilon = \nabla u$), enforcement of the train-displacement relations ($\varepsilon = \nabla u$), and the third term is a Lagrange multiplier enforcement of the continuity of displacement field at the fiber–matrix interface and corresponds to the interface energy. The Lagrange multiplier λ can be interpreted as a force quantity required to prevent relative displacement at the interface boundary. In the present work, we assume a perfect bond between the fiber and the matrix and thus preclude any debonding or pull out of fibers. Consequently the third term becomes identically zero leading to the following three-field energy functional.

$$\Pi(\varepsilon, \sigma, u) := \frac{1}{2} \int_{\Omega} \varepsilon : \sigma \, d\Omega + \int_{\Gamma_1} \sigma(\nabla u - \varepsilon) \, d\Gamma - \Pi_{ad}(u)$$

(2)

We also want to develop a general framework that can encompass the compressible as well as slightly compressible or nearly incompressible material systems. For example, metal-matrix composites normally show a compressible elastic and isochoric (volume preserving) inelastic response while polymer-based composites show a volume preserving or incompressible behavior even at small strains. It is well known that the Galerkin approximation to incompressible or nearly incompressible elasticity leads to erroneous results, e.g. mesh locking phenomenon, pressure oscillations, checkerboard modes, to name a few. In the last two decades extensive research efforts have been directed to this issue and there are some well-established techniques that can quite successfully handle the incompressible range of the response spectrum.

We assume the strain field to be divided into deviatoric and volumetric components

$$\varepsilon(u, \varphi) := \text{dev}[\nabla u] + \frac{1}{n_{al}} \varphi I = \nabla u + \frac{1}{n_{al}} \varphi - \text{dev} u I$$

(3)

where $u : \Omega \to \mathbb{R}^{n_{al}}$ is the displacement field, $\varphi : \Omega \to \mathbb{R}$ is the spherical part of ε and is regarded as an independent field, and

$$\text{dev}[.] := (\cdot) - \frac{1}{n_{al}} \text{tr}(\cdot) I$$

represents the deviatoric part of the indicated argument. The stress field which is compatible with the assumed strain field can be expressed as

$$\sigma(u, \varphi, p) = \text{dev}[D(u, \varphi)] + p I$$

(4)

where D represents the material constitutive matrix and $p : \Omega \to \mathbb{R}$ is an independent function which is to be interpreted as the hydrostatic pressure. By substituting eqns (3) and (4) into the three-field functional of eqn (2), we obtain the modified functional

$$\Pi(u, \varphi, p) = \frac{1}{2} \int_{\Omega} \varepsilon(u, \varphi) : \sigma(u, \varphi) \, d\Omega + \int_{\Gamma_1} \lambda(u'' - u')d\Gamma - \Pi_{ad}(u)$$

(5)

We denote the variations in volumetric strain φ and pressure p by ψ and q, respectively, all of which are only required to be square integrable, i.e. $L_2(\mathcal{Q})$ over the domain. As no boundary conditions are applied on stresses or strains, the admissible spaces of solutions and corresponding spaces of variations coincide, i.e. $\varphi : L_2(\mathcal{Q})$. The boundary of domain Ω, denoted by Γ, is assumed to be piecewise smooth. We further assume that Γ is decomposed into two non-overlapping subregions Γ_1 and Γ_2, where Γ_1 is the portion of the boundary with prescribed displacement field g, and Γ_2 is the portion of the boundary with prescribed tractions h. The admissible spaces for the displacement field and its variations are

$$\mathcal{S} = \{u \in H^2(\Omega), u : \Omega \to \mathbb{R}^{n_{al}}, u = g \text{ on } \Gamma_1 \}$$

(6)

$$\mathcal{Q} = \{w \in H^1_0(\Omega), w : \Omega \to \mathbb{R} \}$$

(7)

where \mathcal{S} is the space of trial displacements and \mathcal{Q} is the associated space of weighting functions. $H^2(\Omega)$ denotes the space of square-integrable functions along with their generalized derivatives defined over Ω, and $H^1_0(\Omega)$ is the subset of $H^1(\Omega)$ whose members satisfy zero essential boundary conditions.

The minimization problem consists of finding the stationary point of eqn (5) and satisfying the prescribed boundary conditions which are assumed to take the form

$$u = g \ \forall x \in \Gamma_1$$

(8)

$$\sigma u = h \ \forall x \in \Gamma_2$$

(9)

where n denotes the unit outward normal to boundary Γ.

The stationarity conditions associated with eqn (5) yield the variational form of the problem. For the case of small strains and static loads, and assuming the fibrous composite to occupy a region Ω in $\mathbb{R}^{n_{al}}$, the formal statement of the variational form may be expressed as: given $f : \Omega \to \mathbb{R}^{n_{al}}, g : \Gamma_1 \to \mathbb{R}^{n_{al} - 1}, h : \Gamma_2 \to \mathbb{R}^{n_{al} - 1}$, find $(u, \varphi, p) \in \mathcal{S} \times \mathcal{Q}$ such that for all $(w, \psi, q) \in \mathcal{V} \times \mathcal{V} \times \mathcal{Q}$

$$(\nabla u, \text{dev}[D(u, \varphi)] + p I) = (w, f) + (w, h)_\Gamma, \forall w \in \mathcal{V} \quad (10)$$

$$\langle q, \text{div}u - \varphi \rangle = 0 \ \forall q \in L_2^2(\Omega)$$

(11)

$$\langle \psi - p + \frac{1}{2}\text{tr}[D(u, \varphi)] \rangle = 0 \ \forall \psi \in L_2^2(\Omega)$$

(12)

where (\cdot, \cdot) denotes the $L_2^2(\Omega)$ inner product, and $(\cdot, \cdot)_\Gamma$ represents the $L_2(\Gamma)$ inner product.
FINITE ELEMENT FRAMEWORK

We now introduce the finite-dimensional approximations for displacements, strains and stresses as \(S^h \subset S, V^h \subset V, D^h \subset D, P^h \subset P \), respectively. The discrete displacement field and its variation are continuous globally, while the discrete stress and strain fields are assumed to be discontinuous across element boundaries. As a result of this discontinuous approximation, the discrete versions of eqns (11) and (12) can be written over the domain of an individual element \(Q \) as

\[
(q^h, \text{div} u^h - \varphi^h)_{\Omega} = 0 \quad (13)
\]

\[
\left(q^h, - \varphi^h + \frac{1}{2} \text{tr}(D_e(u^h, \varphi^h)) \right)_{\gamma} = 0 \quad (14)
\]

Consequently, the stress and strain fields can be eliminated at the element level, leading to a modified displacement type formulation. With this end, we design a discrete projection operator for the strain and pressure fields

\[
\varphi^h = P^T(x)u^e \quad (15)
\]

\[
p^h = P^T(x)\varphi^e \quad (16)
\]

where \(P^T(x) = \{ \gamma_1(x) \cdots \gamma_{n_e}(x) \} \) is a set of \(n_t \) prescribed functions and \(u^e, \varphi^e \in \mathbb{R}^{n_e} \) are \(n_e \) local element parameters corresponding to strains and stresses, respectively.

We define the discrete divergence operator as

\[
\text{div} u^e = b^e \cdot d^e \quad (17)
\]

where \(b^e = \text{I}^T B^e \) and \(B^e \) is the usual strain displacement matrix composed of derivatives of shape functions.

We also define a mean operator over the element domain as

\[
H^e = \int_{\Omega} P(x)P(x)^T d\Omega \quad (18)
\]

and assume that \(H^e \) is invertible (this condition is ensured if the \(n_t \) functions \(\gamma_1, \cdots, \gamma_{n_e} \) in \(P(x) \) are independent). Since any \(q^h \in \mathbb{P}^h \) is discontinuous across element boundaries, eqn (13) implies

\[
\varphi^e = P^T(x)H^{-1} \int_{\Omega} P(x)\text{div} u d\Omega \quad (19)
\]

for \(e = 1,2,\ldots,n_e \). Inserting eqn (17) into eqn (19) we finally obtain

\[
\varphi^e = P^T(x)H^{-1} \int_{\Omega} P(x)b^e d\Omega d^e \quad (20)
\]

Thus, the effect of the interpolations of eqns (15) and (16) is to define a modified discrete divergence operator by eqn (20), and is expressed as \(\varphi^e = \text{div} u^e \).

Similarly substituting eqns (15) and (16) in eqn (14), we obtain

\[
p^e = P^T(x)H^{-1} \int_{\Omega} P(x)\frac{1}{2} \text{tr}(D_e(u^e, \varphi^e)) d\Omega \quad (21)
\]

Also by inserting eqn (20) into the definition of the assumed strain field, eqn (3), we obtain the corresponding discrete version. Now substituting the discrete version of the assumed strain field together with eqns (20) and (21) in eqn (10), we get a displacement version of the discrete variational form. It thus leads to an algebraic system of equations where the primary variable is the displacement field alone.

EVALUATION OF STRESS INTENSITY FACTOR

Let \(\Pi_{\text{str}} \) be the strain energy in eqn (2). We evaluate this strain energy for two configurations of the specimen, i.e. for two different crack lengths \(l_1, l_2 (l_2 > l_1) \). From the two crack lengths and the calculated strain energies, the energy release rate for mode I crack growth is calculated as

\[
G = \frac{\Pi_{\text{str}}^{l_2} - \Pi_{\text{str}}^{l_1}}{l_2 - l_1} \quad (22)
\]

where \(\Pi_{\text{str}}^{l_1} \) and \(\Pi_{\text{str}}^{l_2} \) are the calculated strain energies at crack lengths \(l_1 \) and \(l_2 \), respectively. Using linear elastic fracture mechanics, the stress intensity factor for mode I crack is then computed as

\[
K = \sqrt{\frac{E}{1-v^2}} G \quad (23) \quad \text{(plane strain)}
\]

\[
K = \sqrt{EG} \quad (24) \quad \text{(plane stress)}
\]

where \(E \) and \(v \) are Young’s modulus and Poisson’s ratio of the matrix, respectively.

NUMERICAL EXAMPLES

In this section, we present various numerical experiments on two-dimensional plane strain specimens with straight fibers aligned along the loading direction. We study the interaction between the stress field around the crack tip and the inter-phase stress field that exists at the fiber–matrix interface. As was pointed out in the introduction, the rows of fibers are replaced by layers of effective material. Furthermore, these numerical simulations also represent a through-the-thickness transverse crack in a thick multilayered composite. Figure 2 shows the specimen geometry with a transverse notch and reinforcing fibers. Invoking symmetry in the geometry and loading, and assuming the crack to grow in a
self-similar fashion, we have discretized only half of the specimen. The height \(H \) of the discrete specimen is one-half that of its width, i.e. \(H = W/2 \). The crack length is one-third the specimen width, \(l = W/3 \). All reinforcing layers have a constant diameter \(d = l/30 \). Figure 3 shows a typical finite element mesh with one fiber in the path of the crack. We have assumed a perfect bond between fiber and matrix in the present simulations. The ratio of Young’s modulus for the various fibers with respect to the matrix \(E_f/E_m \) is 5, 15, 25, and 35. Poisson’s ratio for the reinforcement and matrix is \(\nu_f = \nu_m = 0.3 \).

In our numerical simulations, we are controlling the fiber spacing in the transverse direction to investigate the interrelation between the interaction of crack and reinforcement and crack bridging.

Shielding effect: proximity of fiber and reduction in SIF

Reinforcing fibers in the path of a crack play an important role in increasing the strength of a composite. This increase in strength is because of the interaction between the high stress at the crack tip and the high stress gradients at the fiber–matrix interface. This first test case investigates effects of proximity of a fiber ahead of the crack on the reduction in SIF. The specimen is loaded by applying 2% strain at the displacement boundary. In this test case we have considered only one layer of fibers that lie in the path of the crack. The distance \(\delta \) between the reinforcement and the crack tip is varied (in multiples of the diameter of the fiber) in the range \(d \leq \delta \leq 10d \). The results are normalized with respect to the SIF obtained from homogeneous isotropic specimen subjected to the same loading conditions. As can be seen in Figure 4, bringing the fiber close to the crack reduces SIF at the crack tip. Furthermore, a stronger fiber results in a greater reduction in SIF as compared to a less stiff fiber because of the stiff interphase stress boundary. It is also worth noticing that after a distance of 10\(d \), the effect of the reinforcement on \(K_f \) has diminished considerably for all four cases of \(E_f/E_m \).

Effect of number of shielding fibers on reduction in SIF

This test case investigates the effect of the number of fibers in the path of a crack on the reduction in SIF. The results of the simulations are shown in Figure 5. The first reinforcing fiber is one diameter away from the crack tip, i.e. \(\delta = d \). The center-to-center distance between the subsequent fibers is 2\(d \), i.e. \(\lambda = 2d \). Normalization is performed with respect to the homogeneous isotropic specimen with a crack of the same dimensions. The data in Figure 5 shows that the first fiber has the greatest effect on \(K_f \). The second fiber also has some effect but the third and fourth fibers have a considerably smaller...
influence on K_f. For the case of $E_f/E_m = 5$ and 15 the third and fourth fiber have practically no effect. To examine any fiber–fiber interaction on the results of Figure 5 we performed simulations of each fiber separately at their respective locations. The result of the simulations showed that, for the parameters of geometry and elastic constants, linear superposition can be used for the overall effect on K_f. To investigate the effect of E_f/E_m on K_f, the data in Figure 5 are plotted as a function of E_f/E_m in Figure 6. As seen in Figure 6, the trend of the dependence is very similar and independent of the number of fibers. Apparently the first two fibers have the greatest effect on the total stress intensity factor. The addition of a third and fourth fiber has practically no effect.

Spatial distribution of stress field

We first investigate the spatial distribution of σ_{11} in the path ahead of the crack. Figure 7(a) shows the close-up view of the crack tip singularity in the homogeneous specimen. Here comparison is done with the analytical expressions. We know that unlike the analytical expression, numerical methods always give a finite value at the crack tip. In the present case, the numerical method does capture the high gradient at the crack tip. As our next step, we investigate the reduction in the intensity of stress at the crack tip due to reinforcing fibers in the path ahead of the crack. Figure 7(b) represents this reduction in crack tip stresses due to two shielding fibers. We can clearly see the three-fold drop in value. Furthermore, we can see the stress gradients across the width of the fibers as well. We have plotted a close-up view of the region between the crack tip and the fibers in Figure 7(c) which shows the steep stress gradients at the fiber–matrix interfaces. We have also plotted $\ln(1/r)$ singularity along the two sides of adjacent fibers. Although we are not able to exactly catch the singularity, we certainly capture the extremely steep gradients in the stress field. This test case also validates the robustness of the formulation being used here for such ‘mathematically non-smooth’ problems.

To gain a further insight into the stress distribution around the crack tip in the presence of the reinforcement we carried out two sets of simulations. In the first one we started with the specimen without reinforcement. Then we added a fiber at distance d from the crack tip and two more fibers at distances d from the first one and each other. We have not considered a fourth fiber because its effect on K_f was negligible (Figure 5). We have loaded the specimen by applying 2% strain.

Figure 8 shows selective contours of the σ_{11} stress field, which are markedly different from that of the specimen without reinforcing fibers. We can also see the stress contours inside the fibers and extremely high stress gradients (sharp boundary layers) at the interface of the two materials. The iso-stress lines indicate that stress in the fibers at equal distances from the crack path depends on its proximity from the crack tip; the closest fiber being under the most stress. In this simulation E_f/E_m ratio is kept constant and equal to 15.

In the second simulation, we examined the effects of E_f/E_m on the stress fields σ_{11} around the crack tip in the presence of three fibers. Figure 9 presents the spatial stress distribution σ_{11} for E_f/E_m equal to 5 and 25, while keeping the number of fibers fixed equal to 3. As can be seen, the inter-phase stress boundary layers of stronger fibers, Figure 9(b), have a larger zone of influence as compared to that of the weaker fibers, Figure 9(a). Furthermore, interaction of the inter-phase stress boundaries can be seen in these figures.

Effect of a bridging fiber

In this numerical simulation we introduce an intact fiber in the bridging zone in addition to one reinforcing fiber in

![Graph](image-url)
the path ahead of the crack tip (see Figure 10). The motivation for this case study originates from the need to examine the relative effects of a bridging fiber and a fiber ahead of the crack tip on the stress intensity factor. To examine the contribution of a bridging fiber we vary the distance Δ between the fiber and the crack tip in terms of multiples of fiber diameter d with $d < \Delta < 6d$. A schematic representation of the fiber location is shown in Figure 10. The results of the simulations are shown in Figure 11. Note that the reduction in normalized SIF is inversely proportional to fiber proximity in the wake of the crack. Normalization here is done with respect to a homogeneous

![Figure 8](image)
Figure 8 Effect of number of fibers on stress field: (a) homogeneous specimen; (b) fiber–matrix $E_f/E_m = 15$
isotropic specimen with a crack of same dimensions. Comparing Figures 4 and 11 for \(\frac{E_f}{E_m} = 5 \) and \(\delta = d \), we see that a fiber in the wake of crack reduces the normalized SIF to 3% of its values as compared to the one ahead of crack tip which reduces it to approximately 87%. Consequently, for a given \(\frac{E_f}{E_m} \) ratio and given \(\delta \) from the crack tip, a bridging fiber is much more effective as compared to its counterpart ahead of the crack tip at the same distance.

The normalized force in the bridging fiber (at the crack face) as a function of \(\frac{E_f}{E_m} \) ratio for various \(\Delta \) values is

![Stress Distribution](image)

Figure 9 Effect of \(\frac{E_f}{E_m} \) on stress field: (a) \(\frac{E_f}{E_m} = 5 \); (b) \(\frac{E_f}{E_m} = 25 \)
plotted in Figure 12. Here normalization in each case of \(\Delta \) is done by dividing the force for various \(E_f/E_m \) ratios by their corresponding value of force for \(E_f/E_m = 5 \). It can be seen that for a given fiber crack-tip distance \(\Delta \), the stronger fibers carry more stress and shift the concentration of stress away from the crack tip, thus resulting in considerable reduction in SIF.

Effects of the number of fibers in the bridging zone

To examine the reduction in SIF due to the number of fibers in the bridging zone and stress level along the crack path, we carried out simulations with three fibers ahead of the crack tip and adding one fiber at a time in the bridging zone. We have taken only three fibers along the crack path because the effects of additional fibers reduces the SIF insignificantly (Figure 5). Loading is the same as in the previous tests. The distance of the first fiber ahead of the crack tip is one diameter, i.e. \(\delta = d \), and the surface-to-surface interfiber distance is two diameters, i.e. \(\lambda = 2d \). The distance of the first bridging fiber from the crack tip is \(1d \), i.e. \(\Delta = d \). The fibers in the bridging zone are added at distances of \(2d \) (center-to-center).

Figure 13 shows the evolution of the normalized SIF as a function of the number of fibers in the bridging zone for the case when \(E_f/E_m = 25 \). The numerical data clearly demonstrate that the additional fibers further decrease the SIF at the crack tip. However, the concentration of the first fibers is noticeably larger than that of other fibers. Moreover, the influence starts diminishing substantially after the fifth fiber. The effects of the ratio \(E_f/E_m \) on the SIF are displayed in Figure 14. It is interesting to note that the effects of \(E_f/E_m \) diminish rapidly and after \(E_f/E_m = 15 \) any further increase in \(E_f/E_m \) does not influence the SIF.

In this work we have also studied the normal stress (along line \(x = 0 \); see, for example Figure 10) ahead of the crack and in the bridging zone. The data of these simulations are shown in Figure 15a,b for \(E_f/E_m = 15 \) and 25, respectively.
Notice here that the stress in the fibers ahead of the crack tip is approximately the same in all three fibers, and about the same level as that given by the rule of mixtures. As for the stresses in the fibers in the bridging zone, there seems to be a small increase of the stress except for the fiber located the furthest from the crack tip. This fiber suffers the largest stress but contributes the least to the SIF.

Figure 16 shows the evolution of σ_{11} on the fibers in the bridging zone. It is interesting to note that a cut-off length where the stress on the fibers equals that given by the rule of mixtures decays very quickly as we approach the crack tip.

Effect of uniform thermal stresses

Many practical applications of fibrous composites involve extreme thermal environments. Consequently, it seems appropriate to investigate the effects of thermal stresses on the stress field at the crack tip in the matrix. Temperature effects can be incorporated in the variational framework if the distribution of change in temperature $\Delta T(x)$ is known:

$$\Delta T(x) = T(x) - T_0(x)$$

where $T_0(x)$ is the current spatial distribution of temperature and $T_0(x)$ is the reference temperature distribution for zero thermal stresses in the composite. Let e^h be the pointwise thermal gradient vector defined as

$$e^h = \kappa (\alpha_x \Delta T \alpha_x \Delta T 0)^T$$

where κ is 1 for plane stress and $(1 + \nu)$ for plane strain. α_x and α_y are the coefficients of thermal expansion in the x and y directions, respectively. Stresses are related to thermal strain via the constitutive relation $\sigma = c : (\epsilon - e^h)$. The effect of temperature can be accounted for at the variational level by replacing the first integral in eqn (2) with a modified strain energy term written as

$$\Pi_{\text{strain}} = \frac{1}{2} \int_\Omega (\epsilon - e^h) : c : (\epsilon - e^h) d\Omega$$

$$= \frac{1}{2} \int_\Omega [(\epsilon : c : \epsilon) + (e^h : c : e^h) - 2(\epsilon : c : e^h)] d\Omega$$

(25)

where the first term in eqn (25) is the usual strain energy and identical to the first integral in eqn (2) while the remaining two terms incorporate the temperature effects.

The present simulation considers the thermal stresses that arise because of a change in the temperature of the fiber–matrix system. In these simulations we load the specimen by applying a specified force at the boundary. The ratio of thermal coefficient for fiber and matrix $\alpha_f / \alpha_m = 10^{-1}$ and is assumed to be constant over the range of temperature.
considered. The specimen consists of one bridging fiber at $\delta = 2d$ and no fibers in the path ahead of the crack. Figure 17 shows a linear reduction in SIF for various E/E_m ratios. We have also plotted the normalized force at the fiber tip (Figure 18) where normalization is done with respect to the zero temperature case. It can be observed that there is a corresponding linear increase in force in the fiber. This simulation points out that a variable coefficient of thermal expansion can play an important role in the analysis of a bimaterial specimen. Consequently, a fully coupled thermo-mechanical theory that would evaluate the spatial distribution of thermal gradients and consequently affect the resultant stress field pointwise would be more appropriate for the analysis of fibrous composite systems.

CONCLUSIONS

In this paper we have presented a finite element formulation which is suitable for the analysis of compressible as well as nearly incompressible fiber–matrix systems. The variational foundation of the formulation is based on a modified Hu–Washizu variational principle. We have assumed a perfect bond between the fiber and the matrix to account for the interaction of the two phases. The crack is assumed to grow in a self-similar manner and we have used the node release method to obtain the energy release rate that is used in the evaluation of SIF. We have used nine-node elements for all the test cases presented in Section 5.

In this paper we have investigated the bridging and the shielding mechanism and their effect on the stress field at the crack tip without any other dissipative mechanisms. The following main points can be drawn from the results of the present numerical studies.

1. The effect of the bridging fibers on the SIF is much larger than that of the fibers ahead of the crack tip.
2. The area around the crack tip where the fibers strongly influence the stress intensity factor extends to about three fibers ahead of the crack and five fibers in the wake of the crack.
3. As for the effect of the modulus of elasticity of the fibers on the SIF, the results indicate that for values greater than $E/E_m = 15$ the effect is relatively small. Making fibers too strong with respect to the matrix (beyond a certain limit) may not help in reducing the stress intensity factor at the crack tip.
4. We have also studied the inter-phase stress fields around the reinforcing fibers that show steep gradients normal to the interface. It is seen that stronger fibers have a larger zone of influence and can potentially affect the stresses around the neighboring fibers. The present study also confirms that homogenization of the composite system cannot predict the discrete stress distribution at crack tip and fiber–matrix interfaces, and thus can lead to erroneous conclusions.
5. The effects of temperature change have also been studied in the presence of a bridging fiber. These preliminary results indicate that thermal gradients can result in a redistribution of the stress field and thus can have a pronounced effect on the stress field at the crack tip. It also shows the importance of a coupled thermo-mechanical theory for possible elasto-plastic yielding of the matrix material at the tip of the crack. Such elasto-plastic deformation would considerably alter the stress field in a localized zone in the vicinity of the crack. We plan to pursue these issues in a subsequent paper.

ACKNOWLEDGEMENTS

This research was supported by the Air Force Office of Scientific Research under Grant number F49620-96-1-0467, project director Dr. Walter F. Jones.

REFERENCES

