Combinatorial lower bound for list decoding of codes in finite-field Grassmannian

Rachit Agarwal

University of Illinois at Urbana-Champaign
ISIT 2011
Randomized network coding
Randomized network coding

Source injects a number of packets
Randomized network coding

Source injects a number of packets

Each intermediate node generates a random linear combination of the incoming packets
Randomized network coding

Source injects a number of packets

Each intermediate node generates a random linear combination of the incoming packets

Collectively seen, operations at intermediate nodes are vector space preserving (in absence of failures)
Randomized network coding

Source injects a number of packets

Each intermediate node generates a random linear combination of the incoming packets

Collectively seen, operations at intermediate nodes are vector space preserving (in absence of failures)

Operator channel: models networks as channels that transmit and receive vector spaces
Subspace codes [KK’08]
Subspace codes [KK’08]

Network error correction
Subspace codes [KK’08]

Network error correction

\(\mathcal{W} \) - A fixed N-dimensional space over \(\mathbb{F}_q \)
Subspace codes [KK’08]

Network error correction

\(\mathcal{W} \) - A fixed N-dimensional space over \(\mathbb{F}_q \)

Projective geometry \(\mathcal{P}(\mathcal{W}) \) - the set of all subspaces of \(\mathcal{W} \)
Subspace codes [KK’08]

\(\mathcal{W}\) - A fixed N-dimensional space over \(\mathbb{F}_q\)

Projective geometry \(\mathcal{P}(\mathcal{W})\) - the set of all subspaces of \(\mathcal{W}\)

A subspace code \(\mathcal{C}\) is a non-empty subset of \(\mathcal{P}(\mathcal{W})\)
Codes on finite-field Grassmannian
Codes on finite-field Grassmannian

Dimension of each codeword is a fixed integer ℓ
Codes on finite-field Grassmannian

Dimension of each codeword is a fixed integer ℓ

$\mathcal{P}(\mathcal{W}, \ell)$ - ℓ-dimensional Projective geometry
Codes on finite-field Grassmannian

Dimension of each codeword is a fixed integer ℓ

$P(W, \ell)$ - ℓ-dimensional Projective geometry

A code \mathcal{C} on finite-field Grassmannian
is a non-empty subset of $P(W, \ell)$
Codes on finite-field Grassmannian

Dimension of each codeword is a fixed integer ℓ

$\mathcal{P}(\mathcal{W}, \ell)$ - ℓ-dimensional Projective geometry

A code \mathcal{C} on finite-field Grassmannian is a non-empty subset of $\mathcal{P}(\mathcal{W}, \ell)$

Codes on finite-field Grassmannian possess a nice algebraic structure
Grassmannian graph
Codes on finite-field Grassmannian form a subset of vertices of the Grassmannian graph.
Grassmannian graph

Codes on finite-field Grassmannian form a subset of vertices of the Grassmannian graph

Grassmannian graph is a distance-regular graph

interesting algebraic properties that one could exploit
This talk

List decoding of codes on finite-field Grassmannian
This talk

List decoding of codes on finite-field Grassmannian

Focus on list size 2
This talk

List decoding of codes on finite-field Grassmannian

Focus on list size 2

Compute bounds on size of codes that are list decodable
This talk

List decoding of codes on finite-field Grassmannian

Focus on list size 2

Compute bounds on size of codes that are list decodable

Technique
This talk

List decoding of codes on finite-field Grassmannian

Focus on list size 2

Compute bounds on size of codes that are list decodable

Technique

Generalization of sphere-covering condition
This talk

List decoding of codes on finite-field Grassmannian

Focus on list size 2

Compute bounds on size of codes that are list decodable

Technique

Generalization of sphere-covering condition

Exploiting algebraic properties of the Grassmannian graph
Sphere-covering condition
Sphere-covering condition
Sphere-covering condition

Informally

If we draw balls $B(s, \rho)$ of radius ρ around each codeword, any subspace must be contained in at most one sphere.
A code of size $|\mathcal{C}|$ exists if one can pack $|\mathcal{C}|$ spheres without violating the above condition.

Sphere-covering condition

Informally

If we draw balls $\mathcal{B}(s, \rho)$ of radius ρ around each codeword, any subspace must be contained in at most one sphere.

Existence of a code

A code of size $|\mathcal{C}|$ exists if one can pack $|\mathcal{C}|$ spheres without violating the above condition.
Can we generalize Sphere-covering condition in a meaningful way to derive bounds on size of list-decodable codes?
\[\lambda_{i,j}(\delta) = \left| \{ x \in \mathcal{P}(\mathcal{W}, \ell) : d(x, s) = i ; d(x, s') = j \} \right| \]
Intersection numbers

$$\lambda_{i,j}(\delta) = \left| \{ x \in \mathcal{P}(W, \ell) : d(x, s) = i ; \ d(x, s') = j \} \right|$$

Informally

The number of subspaces that are at distance i from s and at distance j from s'.
Intersection numbers

\[\lambda_{i,j}(\delta) = \left| \left\{ x \in \mathcal{P}(\mathcal{W}, \ell) : d(x, s) = i \ ; \ d(x, s') = j \right\} \right| \]

Informally

The number of subspaces that are at distance \(i \) from \(s \) and at distance \(j \) from \(s' \).
Intersection numbers

\[\lambda_{i,j}(\delta) = \left| \{ x \in \mathcal{P}(W, \ell) : d(x, s) = i ; d(x, s') = j \} \right| \]

Informally

The number of subspaces that are at distance \(i \) from \(s \) and at distance \(j \) from \(s' \)
Intersection numbers

\[\lambda_{i,j}(\delta) = \left| \{ x \in \mathcal{P}(\mathcal{W}, \ell) : d(x, s) = i ; d(x, s') = j \} \right| \]

Informally

The number of subspaces that are at distance i from s and at distance j from s'
Intersection numbers

\[\lambda_{i,j}(\delta) = \left| \{ x \in \mathcal{P}(\mathcal{W}, \ell) : d(x, s) = i ; d(x, s') = j \} \right| \]

Informally:

The number of subspaces that are at distance i from s and at distance j from s'.

Intersection numbers

\[\lambda_{i,j}(\delta) = \left| \{ x \in \mathcal{P}(W, \mathcal{L}) : d(x, s) = i ; d(x, s') = j \} \right| \]

Informally:

The number of subspaces that are at distance \(i \) from \(s \) and at distance \(j \) from \(s' \).
Intersection numbers

\[\lambda_{i,j}(\delta) = \left| \{ x \in \mathcal{P}(\mathcal{W}, \ell) : d(x, s) = i ; d(x, s') = j \} \right| \]

Informally

The number of subspaces that are at distance \(i\) from \(s\) and at distance \(j\) from \(s'\)

Can be computed efficiently for distance-regular graphs
\[\chi_z(s, s') = \mathcal{B}(s, z) \cap \mathcal{B}(s', z) \]
Intersection space

\[\chi_z(s, s') = \mathcal{B}(s, z) \cap \mathcal{B}(s', z) \]

Informally:

The set of subspaces in the intersection of spheres of radius \(z \) around \(s \) and \(s' \).
Intersection space

\[\chi_z(s, s') = B(s, z) \cap B(s', z) \]

Informally

The set of subspaces in the intersection of spheres of radius \(z \) around \(s \) and \(s' \)
Intersection space

\[\chi_z(s, s') = B(s, z) \cap B(s', z) \]

Informally

The set of subspaces in the intersection of spheres of radius \(z \) around \(s \) and \(s' \)
The set of subspaces in the intersection of spheres of radius z around s and s'.

\[\chi_z(s, s') = B(s, z) \cap B(s', z) \]
Intersection space

\[\chi_z(s, s') = \mathcal{B}(s, z) \cap \mathcal{B}(s', z) \]

Informally

The set of subspaces in the intersection of spheres of radius \(z \) around \(s \) and \(s' \).
Intersection space

\[\chi_z(s, s') = \mathcal{B}(s, z) \cap \mathcal{B}(s', z) \]

Informally

The set of subspaces in the intersection of spheres of radius \(z \) around \(s \) and \(s' \)
The set of subspaces in the intersection of spheres of radius z around s and s'

$$\chi_z(s, s') = \mathcal{B}(s, z) \cap \mathcal{B}(s', z)$$
Size of Intersection space
Size of Intersection space

\[\zeta(\delta, z) = |B(s, z) \cap B(s', z)| \bigg|_{d(s, s') = \delta} \]
\[\zeta(\delta, z) = |\mathcal{B}(s, z) \cap \mathcal{B}(s', z)| \quad \text{if} \quad d(s, s') = \delta \]
The size of intersection space be computed efficiently

$$\zeta(\delta, z) = |B(s, z) \cap B(s', z)| \bigg|_{d(s, s')=\delta}$$

$$|B(s, z) \cap B(s', z)| \bigg|_{d(s, s')=\delta} = \sum_{i=1}^{z} \sum_{j=1}^{z} \lambda_{i,j}(\delta)$$
Another geometric volume
Another geometric volume

$$\xi_z(s, s') = \{x \in \mathcal{P}(W, \ell) : d(x, \chi_z(s, s')) \leq z\}$$
Another geometric volume

\[\xi_z(s, s') = \{ x \in \mathcal{P}(\mathcal{W}, \ell) : d(x, \chi_z(s, s')) \leq z \} \]
Another geometric volume

\[\xi_z(s, s') = \{ x \in \mathcal{P}(\mathcal{W}, \ell) : d(x, \chi_z(s, s')) \leq z \} \]
\[\xi_z(s, s') = \{ x \in \mathcal{P}(\mathcal{W}, \ell) : d(x, \chi_z(s, s')) \leq z \} \]
Another geometric volume

\[\xi_z(s, s') = \{ x \in \mathcal{P}(W, \ell) : d(x, \chi_z(s, s')) \leq z \} \]
Another geometric volume

\[\xi_z(s, s') = \{ x \in \mathcal{P}(\mathcal{W}, \ell) : d(x, \chi_z(s, s')) \leq z \} \]

Collection of all subspaces that are within distance \(\rho \) from a subspace in \(\chi_z(s, s') \)
Another geometric volume

\[\xi_z(s, s') = \{ x \in \mathcal{P}(W, \ell) : d(x, \chi_z(s, s')) \leq z \} \]

Interpretation

Collection of all subspaces that are within distance \(\rho \) from a subspace in \(\chi_z(s, s') \)

Interpretation - II

Collection of all spheres of radius \(\rho \) that contain the pair of codewords \(s, s' \)
Generalizing sphere-covering condition
The collection of subspaces $\mathcal{S} = \{s_i : s_i \in \mathcal{P}(\mathcal{W}, \ell)\}$ defines a code on finite-field Grassmannian that is $(\rho, 2)$–list decodable if for each pair of $s_i, s_j \in \mathcal{S}$,
$$\xi_\rho(s_i, s_j) \cap \mathcal{S} \leq 2$$
Generalizing sphere-covering condition

The collection of subspaces \(S = \{ s_i : s_i \in \mathcal{P}(W, \ell) \} \) defines a code on finite-field Grassmannian that is \((\rho, 2) - \) list decodable if for each pair of \(s_i, s_j \in S \),

\[
\xi_\rho(s_i, s_j) \cap S \leq 2
\]
The collection of subspaces $\mathcal{S} = \{s_i : s_i \in \mathcal{P}(\mathcal{W}, \ell)\}$ defines a code on finite-field Grassmannian that is $(\rho, 2)$-list decodable if for each pair of $s_i, s_j \in \mathcal{S}$,

$$\xi_\rho(s_i, s_j) \cap \mathcal{S} \leq 2$$

Informal statement

The shaded area, corresponding to each pair of codewords, must not contain any other codeword.
For any non-negative integers $z, \delta,$ and any pair of subspaces $s, s' \in \mathcal{P}(\mathcal{W}, \ell)$, with $d(s, s') = \delta$, the size of $\xi_z(s, s')$ is upper bounded as: $|\xi_z(s, s')| \leq \zeta(\delta, 2z)$.
For any non-negative integers z, δ, and any pair of subspaces $s, s' \in \mathcal{P}(W, \ell)$, with $d(s, s') = \delta$, the size of $\xi_z(s, s')$ is upper bounded as: $|\xi_z(s, s')| \leq \zeta(\delta, 2z)$
For any non-negative integers z, δ, and any pair of subspaces $s, s' \in \mathcal{P}(\mathcal{W}, \ell)$, with $d(s, s') = \delta$, the size of $\xi_z(s, s')$ is upper bounded as:

$$|\xi_z(s, s')| \leq \zeta(\delta, 2z)$$
For any non-negative integers z, δ, and any pair of subspaces $s, s' \in \mathcal{P}(\mathcal{W}, \ell)$, with $d(s, s') = \delta$, the size of $\xi_z(s, s')$ is upper bounded as: \[|\xi_z(s, s')| \leq \zeta(\delta, 2z) \]
Lower Bound
Strategy

Generate a code by randomly selecting $|S|$ subspaces
Generate a code by randomly selecting $|S|$ subspaces.

$E_{i,j} := \text{Event that a randomly selected subspace is contained in } \xi_{\rho}(s_i, s_j) \text{ and not in } S$
Generate a code by randomly selecting $|S|$ subspaces

$E_{i,j} := \text{Event that a randomly selected subspace is contained in } \xi_{\rho}(s_i, s_j) \text{ and not in } S$
Lower Bound

Strategy

Generate a code by randomly selecting $|S|$ subspaces

$E_{i,j} :=$ Event that a randomly selected subspace is contained in $\xi_\rho(s_i, s_j)$ and not in S

The code is list decodable if

$$\Pr \left[\bigcup_{\{i,j\} \in \left(\frac{|S|}{2} \right)} E_{i,j} \right] > 0$$
Lower bound ..
$$Pr[E_{i,j}] \leq \sum_{k=1}^{\ell} \left[Pr[E_{i,j} | d(s_i, s_j) = k] \times Pr[d(s_i, s_j) = k] \right]$$
Lower bound ..

\[Pr[E_{i,j}] \leq \sum_{k=1}^{\ell} \left[Pr[E_{i,j} \mid d(s_i, s_j) = k] \times Pr[d(s_i, s_j) = k] \right] \]

Easy, call it P(k)
Lower bound ..

\[Pr[E_{i,j}] \leq \sum_{k=1}^{\ell} \left[Pr[E_{i,j} \mid d(s_i, s_j) = k] \times Pr[d(s_i, s_j) = k] \right] \]

Easy, call it \(P(k) \)
Lower bound ..

\[Pr[E_{i,j}] \leq \sum_{k=1}^{\ell} \left[Pr[E_{i,j} | d(s_i, s_j) = k] \times Pr[d(s_i, s_j) = k] \right] \]

Easy, call it \(P(k) \)

\[Pr[E_{i,j} | d(s_i, s_j) = k] = \left[1 - \frac{|S|}{|\mathcal{P}(W, \ell)|} \right] \cdot \frac{\xi_\rho(s_i, s_j)}{|\mathcal{P}(W, \ell)|} \bigg|_{d(s_i, s_j) = k} \]
Lower bound..

\[\Pr[E_{i,j}] \leq \sum_{k=1}^{\ell} \left[\Pr[E_{i,j} \mid d(s_i, s_j) = k] \times \Pr[d(s_i, s_j) = k] \right] \]

Easy, call it \(P(k) \)

\[\Pr[E_{i,j} \mid d(s_i, s_j) = k] = \left[1 - \frac{|S|}{|P(W, \ell)|} \right] \cdot \frac{|\xi_{\rho}(s_i, s_j)|}{|P(W, \ell)|} \bigg|_{d(s_i, s_j) = k} \]

\[\Pr[E_{i,j} \mid d(s_i, s_j) = k] \leq \left[1 - \frac{|S|}{|P(W, \ell)|} \right] \cdot \frac{\zeta(k, 2\rho)}{|P(W, \ell)|} \]
Lower bound on code size
There exists a code on finite-field Grassmannian \mathcal{S}, of size $|\mathcal{S}|$, that is $(\rho, 2)$–list decodable, such that $|\mathcal{S}|$ is lower bounded by:

$$|\mathcal{S}| > 0.5 + \sqrt{\frac{4 \cdot |\mathcal{P}(\mathcal{W}, \ell)|}{\sum_{k=1}^{\ell} P(k) \cdot \zeta(k, 2\rho)}}$$
There exists a code on finite-field Grassmannian S, of size $|S|$, that is $(\rho, 2)$ – list decodable, such that $|S|$ is lower bounded by:

$$|S| > 0.5 + \sqrt{\frac{4 \cdot |\mathcal{P}(W, \ell)|}{\sum_{k=1}^{\ell} P(k) \cdot \zeta(k, 2\rho)}}$$
There exists a code on finite-field Grassmannian \mathcal{S}, of size $|\mathcal{S}|$, that is $(\rho, 2)$ – list decodable, such that $|\mathcal{S}|$ is lower bounded by:

$$|\mathcal{S}| > 0.5 + \sqrt{\frac{4 \cdot |\mathcal{P}(\mathcal{W}, \ell)|}{\sum_{k=1}^{\ell} P(k) \zeta(k, 2\rho)}}$$
Summary

Intersection numbers
Summary

Intersection numbers

Intersection volume
Summary

- Intersection numbers
- Intersection volume
- Generalization of sphere-covering condition
Intersection numbers

Intersection volume

Generalization of sphere-covering condition

Used intersection size to approximate size of the new volume
Summary

Intersection numbers
Intersection volume
Generalization of sphere-covering condition
Used intersection size to approximate size of the new volume

Random coding argument to establish the lower bound on size of list-decodable codes
Open problems
Open problems

Combinatorial side
- Closed form expression, asymptotic analysis
- generalizing to larger list sizes
- design of “good” list decodable codes
Open problems

Combinatorial side
- Closed form expression, asymptotic analysis
- generalizing to larger list sizes
- design of “good” list decodable codes

Algorithmic side
- design of list decoding algorithms
(Mahdavifar & Vardy, ISIT 2010)
Open problems

Combinatorial side
- Closed form expression, asymptotic analysis
- Generalizing to larger list sizes
- Design of “good” list decodable codes

Algorithmic side
- Design of list decoding algorithms
 (Mahdavifar & Vardy, ISIT 2010)

Generalization to general subspace codes - do they possess interesting list decodability properties?