
Algorithms Lecture 27: Linear Programming Algorithms [Fa’13]

Simplicibus itaque verbis gaudet Mathematica Veritas, cum etiam per
se simplex sit Veritatis oratio. [And thus Mathematical Truth prefers
simple words, because the language of Truth is itself simple.]

— Tycho Brahe (quoting Seneca (quoting Euripides))
Epistolarum astronomicarum liber primus (1596)

When a jar is broken, the space that was inside
Merges into the space outside.
In the same way, my mind has merged in God;
To me, there appears no duality.

— Sankara, Viveka-Chudamani (c. 700), translator unknown

27 Linear Programming Algorithms?

In this lecture, we’ll see a few algorithms for actually solving linear programming problems. The
most famous of these, the simplex method, was proposed by George Dantzig in 1947. Although
most variants of the simplex algorithm performs well in practice, no deterministic simplex variant
is known to run in sub-exponential time in the worst case.¹ However, if the dimension of the
problem is considered a constant, there are several linear programming algorithms that run in
linear time. I’ll describe a particularly simple randomized algorithm due to Raimund Seidel.

My approach to describing these algorithms will rely much more heavily on geometric
intuition than the usual linear-algebraic formalism. This works better for me, but your mileage
may vary. For a more traditional description of the simplex algorithm, see Robert Vanderbei’s
excellent textbook Linear Programming: Foundations and Extensions [Springer, 2001], which can
be freely downloaded (but not legally printed) from the author’s website.

27.1 Bases, Feasibility, and Local Optimality

Consider the canonical linear program max{c · x | Ax ≤ b, x ≥ 0}, where A is an n× d constraint
matrix, b is an n-dimensional coefficient vector, and c is a d-dimensional objective vector. We will
interpret this linear program geometrically as looking for the lowest point in a convex polyhedron
in Rd , described as the intersection of n+ d halfspaces. As in the last lecture, we will consider
only non-degenerate linear programs: Every subset of d constraint hyperplanes intersects in a
single point; at most d constraint hyperplanes pass through any point; and objective vector is
linearly independent from any d − 1 constraint vectors.

A basis is a subset of d constraints, which by our non-degeneracy assumption must be linearly
independent. The location of a basis is the unique point x that satisfies all d constraints with
equality; geometrically, x is the unique intersection point of the d hyperplanes. The value of a
basis is c · x , where x is the location of the basis. There are precisely

�n+d
d

�

bases. Geometrically,
the set of constraint hyperplanes defines a decomposition of Rd into convex polyhedra; this cell
decomposition is called the arrangement of the hyperplanes. Every subset of d hyperplanes
(that is, every basis) defines a vertex of this arrangement (the location of the basis). I will use the
words ‘vertex’ and ‘basis’ interchangeably.

¹However, there are randomized variants of the simplex algorithm that run in subexponential expected time, most
notably the RandomFacet algorithm analyzed by Gil Kalai in 1992, and independently by Jií Matoušek, Micha
Sharir, and Emo Welzl in 1996. No randomized variant is known to run in polynomial time. In particular, in 2010,
Oliver Friedmann, Thomas Dueholm Hansen, and Uri Zwick proved that the worst-case expected running time of
RandomFacet is superpolynomial.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms

Algorithms Lecture 27: Linear Programming Algorithms [Fa’13]

A basis is feasible if its location x satisfies all the linear constraints, or geometrically, if
the point x is a vertex of the polyhedron. If there are no feasible bases, the linear program is
infeasible.

A basis is locally optimal if its location x is the optimal solution to the linear program
with the same objective function and only the constraints in the basis. Geometrically, a basis is
locally optimal if its location x is the lowest point in the intersection of those d halfspaces. A
careful reading of the proof of the Strong Duality Theorem reveals that local optimality is the
dual equivalent of feasibility; a basis is locally feasible for a linear program Π if and only if the
same basis is feasible for the dual linear program q. For this reason, locally optimal bases are
sometimes also called dual feasible. If there are no locally optimal bases, the linear program is
unbounded.²

Two bases are neighbors if they have d−1 constraints in common. Equivalently, in geometric
terms, two vertices are neighbors if they lie on a line determined by some d − 1 constraint
hyperplanes. Every basis is a neighbor of exactly dn other bases; to change a basis into one of its
neighbors, there are d choices for which constraint to remove and n choices for which constraint
to add. The graph of vertices and edges on the boundary of the feasible polyhedron is a subgraph
of the basis graph.

The Weak Duality Theorem implies that the value of every feasible basis is less than or equal
to the value of every locally optimal basis; equivalently, every feasible vertex is higher than every
locally optimal vertex. The Strong Duality Theorem implies that (under our non-degeneracy
assumption), if a linear program has an optimal solution, it is the unique vertex that is both
feasible and locally optimal. Moreover, the optimal solution is both the lowest feasible vertex and
the highest locally optimal vertex.

27.2 The Primal Simplex Algorithm: Falling Marbles

From a geometric standpoint, Dantzig’s simplex algorithm is very simple. The input is a set H of
halfspaces; we want the lowest vertex in the intersection of these halfspaces.

Simplex1(H):
if ∩H =∅

return Infeasible
x ← any feasible vertex
while x is not locally optimal
〈〈pivot downward, maintaining feasibility〉〉
if every feasible neighbor of x is higher than x

return Unbounded
else

x ← any feasible neighbor of x that is lower than x
return x

Let’s ignore the first three lines for the moment. The algorithm maintains a feasible vertex
x . At each so-called pivot operation, the algorithm moves to a lower vertex, so the algorithm
never visits the same vertex more than once. Thus, the algorithm must halt after at most

�n+d
d

�

pivots. When the algorithm halts, either the feasible vertex x is locally optimal, and therefore the
optimum vertex, or the feasible vertex x is not locally optimal but has no lower feasible neighbor,
in which case the feasible region must be unbounded.

²For non-degenerate linear programs, the feasible region is unbounded in the objective direction if and only if
no basis is locally optimal. However, there are degenerate linear programs with no locally optimal basis that are
infeasible.

2

Algorithms Lecture 27: Linear Programming Algorithms [Fa’13]

Notice that we have not specified which neighbor to choose at each pivot. Many different
pivoting rules have been proposed, but for almost every known pivot rule, there is an input
polyhedron that requires an exponential number of pivots under that rule. No pivoting rule is
known that guarantees a polynomial number of pivots in the worst case, or even in expectation.³

27.3 The Dual Simplex Algorithm: Rising Bubbles

We can also geometrically interpret the execution of the simplex algorithm on the dual linear
program q. Again, the input is a set H of halfspaces, and we want the lowest vertex in the
intersection of these halfspaces. By the Strong Duality Theorem, this is the same as the highest
locally-optimal vertex in the hyperplane arrangement.

Simplex2(H):
if there is no locally optimal vertex

return Unbounded
x ← any locally optimal vertex
while x is not feasbile
〈〈pivot upward, maintaining local optimality〉〉
if every locally optimal neighbor of x is lower than x

return Infeasible
else

x ← any locally-optimal neighbor of x that is higher than x
return x

Let’s ignore the first three lines for the moment. The algorithm maintains a locally optimal
vertex x . At each pivot operation, it moves to a higher vertex, so the algorithm never visits the
same vertex more than once. Thus, the algorithm must halt after at most

�n+d
d

�

pivots. When the
algorithm halts, either the locally optimal vertex x is feasible, and therefore the optimum vertex,
or the locally optimal vertex x is not feasible but has no higher locally optimal neighbor, in which
case the problem must be infeasible.

The primal simplex (falling marble) algorithm in action. The dual simplex (rising bubble) algorithm in action.

From the standpoint of linear algebra, there is absolutely no difference between running
Simplex1 on any linear program Π and running Simplex2 on the dual linear program q. The

³In 1957, Hirsch conjectured that for any linear programming instance with d variables and n+ d constraints,
starting at any feasible basis, there is a sequence of at most n pivots that leads to the optimal basis. This long-standing
conjecture was finally disproved in 2010 by Fransisco Santos, who described an counterexample with 43 variables, 86
facets, and diameter 44.

3

Algorithms Lecture 27: Linear Programming Algorithms [Fa’13]

actual code is identical. The only difference between the two algorithms is how we interpret the
linear algebra geometrically.

27.4 Computing the Initial Basis

To complete our description of the simplex algorithm, we need to describe how to find the initial
vertex x . Our algorithm relies on the following simple observations.

First, the feasibility of a vertex does not depend at all on the choice of objective vector; a
vertex is either feasible for every objective function or for none. No matter how we rotate the
polyhedron, every feasible vertex stays feasible. Conversely (or by duality, equivalently), the local
optimality of a vertex does not depend on the exact location of the d hyperplanes, but only on
their normal directions and the objective function. No matter how we translate the hyperplanes,
every locally optimal vertex stays locally optimal. In terms of the original matrix formulation,
feasibility depends on A and b but not c, and local optimality depends on A and c but not b.

The second important observation is that every basis is locally optimal for some objective
function. Specifically, it suffices to choose any vector that has a positive inner product with each
of the normal vectors of the d chosen hyperplanes. Equivalently, we can make any basis feasible
by translating the hyperplanes appropriately. Specifically, it suffices to translate the chosen d
hyperplanes so that they pass through the origin, and then translate all the other halfspaces so
that they strictly contain the origin.

Our strategy for finding our initial feasible vertex is to choose any vertex, choose a new
objective function that makes that vertex locally optimal, and then find the optimal vertex for
that objective function by running the (dual) simplex algorithm. This vertex must be feasible,
even after we restore the original objective function!

(a) (b) (c)

(a) Choose any basis. (b) Rotate objective to make it locally optimal, and pivot ’upward’ to find a feasible basis.
(c) Pivot downward to the optimum basis for the original objective.

Equivalently, to find an initial locally optimal vertex, we choose any vertex, translate the
hyperplanes so that that vertex becomes feasible, and then find the optimal vertex for those
translated constraints using the (primal) simplex algorithm. This vertex must be locally optimal,
even after we restore the hyperplanes to their original locations!

Here are more complete descriptions of the simplex algorithm with this initialization rule, in
both primal and dual forms. As usual, the input is a set H of halfspaces, and the algorithms either
return the lowest vertex in the intersection of these halfspaces or report that no such vertex exists.

4

Algorithms Lecture 27: Linear Programming Algorithms [Fa’13]

(a) (b) (c)

(a) Choose any basis. (b) Translate constraints to make it feasible, and pivot downward to find a locally optimal basis.
(c) Pivot upward to the optimum basis for the original constraints.

Simplex1(H):
x ← any vertex
H̃ ← any rotation of H that makes x locally optimal

while x is not feasible
if every locally optimal neighbor of x is lower (wrt H̃) than x

return Infeasible
else

x ← any locally optimal neighbor of x that is higher (wrt H̃) than x

while x is not locally optimal
if every feasible neighbor of x is higher than x

return Unbounded
else

x ← any feasible neighbor of x that is lower than x
return x

Simplex2(H):
x ← any vertex
H̃ ← any translation of H that makes x feasible

while x is not locally optimal
if every feasible neighbor of x is higher (wrt H̃) than x

return Unbounded
else

x ← any feasible neighbor of x that is lower (wrt H̃) than x

while x is not feasible
if every locally optimal neighbor of x is lower than x

return Infeasible
else

x ← any locally-optimal neighbor of x that is higher than x
return x

27.5 Linear Expected Time for Fixed Dimensions

In most geometric applications of linear programming, the number of variables is a small constant,
but the number of constraints may still be very large.

The input to the following algorithm is a set H of n halfspaces and a set B of b hyperplanes.
(B stands for basis.) The algorithm returns the lowest point in the intersection of the halfspaces

5

Algorithms Lecture 27: Linear Programming Algorithms [Fa’13]

in H and the hyperplanes B. At the top level of recursion, B is empty. I will implicitly assume that
the linear program is both feasible and bounded. (If necessary, we can guarantee boundedness
by adding a single halfspace to H, and we can guarantee feasibility by adding a dimension.) A
point x violates a constraint h if it is not contained in the corresponding halfspace.

SeidelLP(H, B) :
if |B|= d

return
⋂

B
if |H ∪ B|= d

return
⋂

(H ∪ B)
h← random element of H
x ← SeidelLP(H \ h, B) (∗)
if x violates h

return SeidelLP(H \ h, B ∪ ∂ h)
else

return x

The point x recursively computed in line (∗) is the optimal solution if and only if the random
halfspace h is not one of the d halfspaces that define the optimal solution. In other words, the
probability of calling SeidelLP(H, B ∪ h) is exactly (d − b)/n. Thus, we have the following
recurrence for the expected number of recursive calls for this algorithm:

T (n, b) =







1 if b = d or n+ b = d

T (n− 1, b) +
d − b

n
· T (n− 1, b+ 1) otherwise

The recurrence is somewhat simpler if we write δ = d − b:

T (n,δ) =







1 if δ = 0 or n= δ

T (n− 1,δ) +
δ

n
· T (n− 1,δ− 1) otherwise

It’s easy to prove by induction that T (n,δ) = O(δ! n):

T (n,δ) = T (n− 1,δ) +
δ

n
· T (n− 1,δ− 1)

≤ δ! (n− 1) +
δ

n
(δ− 1)! · (n− 1) [induction hypothesis]

= δ! (n− 1) +δ!
n− 1

n
≤ δ! n

At the top level of recursion, we perform one violation test in O(d) time. In each of the base
cases, we spend O(d3) time computing the intersection point of d hyperplanes, and in the first
base case, we spend O(dn) additional time testing for violations. More careful analysis implies
that the algorithm runs in O(d! · n) expected time.

Exercises

1. Fix a non-degenerate linear program in canonical formwith d variables and n+d constraints.

6

Algorithms Lecture 27: Linear Programming Algorithms [Fa’13]

(a) Prove that every feasible basis has exactly d feasible neighbors.

(b) Prove that every locally optimal basis has exactly n locally optimal neighbors.

2. Suppose you have a subroutine that can solve linear programs in polynomial time, but
only if they are both feasible and bounded. Describe an algorithm that solves arbitrary
linear programs in polynomial time. Your algorithm should return an optimal solution if
one exists; if no optimum exists, your algorithm should report that the input instance is
Unbounded or Infeasible, whichever is appropriate. [Hint: Add one variable and one
constraint.]

3. (a) Give an example of a non-empty polyhedron Ax ≤ b that is unbounded for every
objective vector c.

(b) Give an example of an infeasible linear program whose dual is also infeasible.

In both cases, your linear program will be degenerate.

4. Describe and analyze an algorithm that solves the following problem in O(n) time: Given
n red points and n blue points in the plane, either find a line that separates every red point
from every blue point, or prove that no such line exists.

5. The single-source shortest path problem can be formulated as a linear programming
problem, with one variable dv for each vertex v 6= s in the input graph, as follows:

maximize
∑

v

dv

subject to dv ≤ `s→v for every edge s→ v

dv − du ≤ `u→v for every edge u→ v with u 6= s

dv ≥ 0 for every vertex v 6= s

This problem asks you to describe the behavior of the simplex algorithm on this linear
program in terms of distances. Assume that the edge weights `u→v are all non-negative
and that there is a unique shortest path between any two vertices in the graph.

(a) What is a basis for this linear program? What is a feasible basis? What is a locally
optimal basis?

(b) Show that in the optimal basis, every variable dv is equal to the shortest-path distance
from s to v.

(c) Describe the primal simplex algorithm for the shortest-path linear program directly in
terms of vertex distances. In particular, what does it mean to pivot from a feasible
basis to a neighboring feasible basis, and how can we execute such a pivot quickly?

(d) Describe the dual simplex algorithm for the shortest-path linear program directly in
terms of vertex distances. In particular, what does it mean to pivot from a locally
optimal basis to a neighboring locally optimal basis, and how can we execute such a
pivot quickly?

(e) Is Dijkstra’s algorithm an instance of the simplex method? Justify your answer.

7

Algorithms Lecture 27: Linear Programming Algorithms [Fa’13]

(f) Is Shimbel’s algorithm an instance of the simplex method? Justify your answer.

6. The maximum (s, t)-flow problem can be formulated as a linear programming problem,
with one variable fu→v for each edge u→ v in the input graph:

maximize
∑

w

fs→w −
∑

u

fu→s

subject to
∑

w

fv→w −
∑

u

fu→v = 0 for every vertex v 6= s, t

fu→v ≤ cu→v for every edge u→ v

fu→v ≥ 0 for every edge u→ v

This problem asks you to describe the behavior of the simplex algorithm on this linear
program in terms of flows.

(a) What is a basis for this linear program? What is a feasible basis? What is a locally
optimal basis?

(b) Show that the optimal basis represents a maximum flow.

(c) Describe the primal simplex algorithm for the flow linear program directly in terms of
flows. In particular, what does it mean to pivot from a feasible basis to a neighboring
feasible basis, and how can we execute such a pivot quickly?

(d) Describe the dual simplex algorithm for the flow linear program directly in terms
of flows. In particular, what does it mean to pivot from a locally optimal basis to a
neighboring locally optimal basis, and how can we execute such a pivot quickly?

(e) Is the Ford-Fulkerson augmenting path algorithm an instance of the simplex method?
Justify your answer. [Hint: There is a one-line argument.]

7. (a) Formulate the minimum spanning tree problem as an instance of linear programming.
Try to minimize the number of variables and constraints.

(b) In your MST linear program, what is a basis? What is a feasible basis? What is a
locally optimal basis?

(c) Describe the primal simplex algorithm for your MST linear program directly in terms
of the input graph. In particular, what does it mean to pivot from a feasible basis to a
neighboring feasible basis, and how can we execute such a pivot quickly?

(d) Describe the dual simplex algorithm for your MST linear program directly in terms of
the input graph. In particular, what does it mean to pivot from a locally optimal basis
to a neighboring locally optimal basis, and how can we execute such a pivot quickly?

(e) Which of the classical MST algorithms (Borvka, Jarník, Kruskal, reverse greedy), if
any, are instances of the simplex method? Justify your answer.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

8

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms

